Patents by Inventor John M. Finney

John M. Finney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8741337
    Abstract: An encapsulated material containing an oxidation-sensitive core is covered by at least a dried phospholipid layer, and contains at least one phytosterol in the core, the phospholipid layer or in a further layer or layers. By using microencapsulation, oxidatively unstable materials may be provided with a synthetic protective barrier and rendered less susceptible to oxidative degradation.
    Type: Grant
    Filed: January 2, 2009
    Date of Patent: June 3, 2014
    Assignee: Aveka, Inc.
    Inventors: William A. Hendrickson, John M. Finney, Olaf C. Moberg, Christopher J. Rueb, Robert G. Bowman, Chetan S. Rao, Nita M. Bentley
  • Publication number: 20130183432
    Abstract: A method is used to separate fractions from a seed. This can be done by: a) Physically breaking down the Chia seed into smaller particles; b) Adding a liquid carrier to the broken Chia seed to form a Chia liquid carrier blend; c) Optionally providing further processing of the Chia liquid carrier blend to further reduce the particle size of the Chia particles d) Optionally centrifuging the Chia liquid carrier blend; e) Optionally forming at least three discernible layers of materials within the centrifuged Chia liquid carrier blend; f) Optionally separating the composition of at least one layer from remaining layers; and g) Optionally combining the separated layers together into a desired combination/ratios h) Drying the separated layers or combined layers into a flowable powder.
    Type: Application
    Filed: July 19, 2012
    Publication date: July 18, 2013
    Inventors: John M. Finney, Christopher J. Rueb, William A. Hendrickson, Daniel R. Roesler, Robert G. Bowman, David A. Canfield
  • Patent number: 8252354
    Abstract: A method is used to separate fractions from a seed. This can be done by: a) Physically breaking down the Chia seed into smaller particles; b) Adding a liquid carrier to the broken Chia seed to form a Chia liquid carrier blend; c) Optionally providing further processing of the Chia liquid carrier blend to further reduce the particle size of the Chia particles d) Optionally centrifuging the Chia liquid carrier blend; e) Optionally forming at least three discernible layers of materials within the centrifuged Chia liquid carrier blend; f) Optionally separating the composition of at least one layer from remaining layers; and g) Optionally combining the separated layers together into a desired combination/ratios h) Drying the separated layers or combined layers into a flowable powder.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: August 28, 2012
    Assignee: MAS Marketing Holding Company, LLC
    Inventors: John M. Finney, Christopher J. Rueb, William A. Hendrickson, Daniel R. Roesler, Robert G. Bowman, David A. Canfield
  • Publication number: 20120015093
    Abstract: A method provides a milled whole seed product from a whole seed having at least 0.01% by total weight of oil therein. The whole seed is added to an aqueous carrier which is physically milled at a shear rate of at least 3,000 r.p.m. The shearing is continued until at least 50% by weight of seed solids will pass through a square mesh screen having 1.2 mm screen hole dimensions. The solids in aqueous carrier is collected as a suspension or dispersion in the aqueous carrier. The collected seed solids in aqueous carrier are dried to form a free-flowing powder. The free-flowing powder is rehydrated with a second aqueous medium to form a non-mucilaginous suspension or dispersion.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 19, 2012
    Inventors: John M. Finney, Christopher J. Rueb, William A. Hendrickson, Daniel R. Roesler, Robert G. Bowman, David A. Canfield
  • Publication number: 20110059164
    Abstract: An encapsulated material containing an oxidation-sensitive core is covered by at least a dried synthetic organelle layer and optional additional ingredients in the organelle layer or additional layers. By using microencapsulation to mimic or otherwise adapt the storage concepts used by seeds to protect triacylglycerol cores, oxidatively unstable materials may be provided with a synthetic, seed-like oxygen-resistant protective barrier and rendered less susceptible to oxidative degradation.
    Type: Application
    Filed: January 2, 2009
    Publication date: March 10, 2011
    Inventors: William A. Hendrickson, John M. Finney, Olaf C. Moberg, Christopher J. Rueb, Robert G. Bowman, Chetan S. Rao, Nita M. Bentley
  • Publication number: 20110052680
    Abstract: An encapsulated material containing an oxidation-sensitive core is covered by at least a dried phospholipid layer, and contains at least one phytosterol in the core, the phospholipid layer or in a further layer or layers. By using microencapsulation, oxidatively unstable materials may be provided with a synthetic protective barrier and rendered less susceptible to oxidative degradation.
    Type: Application
    Filed: January 2, 2009
    Publication date: March 3, 2011
    Inventors: William A. Hendrickson, John M. Finney, Olaf C. Moberg, Christopher J. Rueb, Robert G. Bowman, Chetan S. Rao, Nita M. Bentley
  • Publication number: 20110020519
    Abstract: An encapsulated material is formed by congealing droplets of a molten blend of oxidatively unstable material and phytosterol in a chilling gas stream to form prilled cores containing oxidatively unstable material and phytosterol, and encapsulating the prilled cores in one or more protective shell layers to form free-flowing microparticles.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 27, 2011
    Inventors: Robert G. Bowman, Christopher J. Rueb, John M. Finney, William A. Hendrickson, Chetan S. Rao, Nita M. Bentley, Richard M. Herreid
  • Publication number: 20100310719
    Abstract: A method is used to separate fractions from a seed. This can be done by: a) Physically breaking down the Chia seed into smaller particles; b) Adding a liquid carrier to the broken Chia seed to form a Chia liquid carrier blend; c) Optionally providing further processing of the Chia liquid carrier blend to further reduce the particle size of the Chia particles d) Optionally centrifuging the Chia liquid carrier blend; e) Optionally forming at least three discernible layers of materials within the centrifuged Chia liquid carrier blend; f) Optionally separating the composition of at least one layer from remaining layers; and g) Optionally combining the separated layers together into a desired combination/ratios h) Drying the separated layers or combined layers into a flowable powder.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 9, 2010
    Inventors: John M. Finney, Christoper J. Rueb, William A. Hendrickson, Daniel R. Roesler, Robert G. Bowman, David A. Canfield