Patents by Inventor John M. Mulloy
John M. Mulloy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9890717Abstract: A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.Type: GrantFiled: September 16, 2016Date of Patent: February 13, 2018Assignee: CUMMINS INC.Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
-
Publication number: 20170002752Abstract: A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.Type: ApplicationFiled: September 16, 2016Publication date: January 5, 2017Inventors: John N. Chi, John M. Mulloy, Siriram S. Popuri
-
Patent number: 9528432Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine fluidly coupled to an exhaust manifold of the engine and a compressor fluidly coupled to an intake manifold of the engine, and an electric motor coupled to a rotatable shaft connected between the compressor and the variable geometry turbine. A target torque required to drive the compressor to achieve target compressor operating parameters is determined, a maximum available torque that can be supplied by the variable geometry turbine in response to a target exhaust gas flow through the variable geometry turbine is determined, and the electric motor is enabled to supply supplemental torque to the rotatable shaft if the target torque is greater than the maximum available torque.Type: GrantFiled: September 25, 2011Date of Patent: December 27, 2016Assignee: Cummins, Inc.Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
-
Patent number: 9453468Abstract: A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.Type: GrantFiled: November 10, 2014Date of Patent: September 27, 2016Assignee: Cummins Inc.Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
-
Patent number: 9181905Abstract: A system controlling an air handling system for an internal combustion engine. An EGR valve in-line with an EGR passageway fluidly coupled between exhaust and intake manifolds of the engine is controllable between fully closed open positions to control a flow rate of exhaust gas through the EGR passageway. A control circuit determines a pump enable value as a function of at least one of a target engine speed and a total fueling target, determines a maximum achievable flow rate of recirculated exhaust gas through the EGR passageway with the EGR valve in the fully open position, and activates an electric gas pump to increase the flow rate of exhaust gas through the EGR passageway if the pump enable value exceeds a threshold pump enable value and a target flow rate of recirculated exhaust gas through the EGR passageway is less than the maximum achievable flow rate.Type: GrantFiled: September 25, 2011Date of Patent: November 10, 2015Assignee: Cummins Inc.Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
-
Publication number: 20150057909Abstract: A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.Type: ApplicationFiled: November 10, 2014Publication date: February 26, 2015Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
-
Patent number: 8892332Abstract: A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.Type: GrantFiled: September 25, 2011Date of Patent: November 18, 2014Assignee: Cummins, Inc.Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
-
Patent number: 8887693Abstract: A system and method are provided for estimating the flow rate of air entering an air inlet of a turbocharger compressor. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a speed value corresponds to an operating speed of the turbocharger. The flow rate of air entering the air inlet of the turbocharger compressor is illustratively estimated as a function of the first pressure value, the second pressure value, the temperature value and the speed value.Type: GrantFiled: September 25, 2011Date of Patent: November 18, 2014Assignee: Cummins, Inc.Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
-
Publication number: 20140214308Abstract: Disclosed herein is an apparatus for increasing the braking power of a compression brake of an internal combustion engine having a variable geometry turbocharger. The apparatus includes an intake throttle module configured to close an air intake throttle in response to operation of the compression brake. Further, the apparatus includes a VGT module is configured to adjust a VGT component to decrease the swallowing capacity of the VGT in response to operation of the compression brake.Type: ApplicationFiled: January 23, 2014Publication date: July 31, 2014Applicant: CUMMINS IP, INC.Inventors: John M. Mulloy, Daniel R. Dempsey, Ameya Oke
-
Patent number: 8783030Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine and a compressor having a fresh air inlet fluidly coupled to ambient and to an air outlet of an electric air pump. An air pump enable value as determined a function of target engine speed and total fuel target values and an air flow target is determined as a function of a target fresh air flow value. Operation of the electric air pump is activated to supply supplemental air flow to the fresh air inlet of the compressor if the air pump enable value is greater than a threshold air pump enable value and the air flow target does not exceed a maximum flow value.Type: GrantFiled: September 25, 2011Date of Patent: July 22, 2014Assignee: Cummins Inc.Inventors: John N Chi, John M Mulloy, Sriram S Popuri, Timothy R Frazier, Martin T Books, Divakar Rajamohan, Indranil Brahma
-
Patent number: 8567192Abstract: A system is provided for controlling an air handling system for an internal combustion engine. A dual-stage turbocharger includes a high-pressure compressor and variable geometry turbine combination fluidly coupled to a low-pressure compressor and variable geometry turbine combination. A control circuit includes a memory having instructions stored therein that are executable by the control circuit to determine a target low-pressure compressor ratio, a target high-pressure compressor ratio, a target high-pressure compressor inlet temperature and a target high-pressure compressor inlet pressure as a function of a target outlet pressure of the high-pressure compressor and a temperature, a pressure and a target flow rate of air entering the air inlet of the low-pressure compressor, and to control the geometries of the low-pressure and high-pressure turbines as a function of the target low-pressure compressor ratio the target high-pressure compressor ratio respectively.Type: GrantFiled: September 25, 2011Date of Patent: October 29, 2013Assignee: Cummins, Inc.Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma, Xi Wei
-
Publication number: 20130074495Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine fluidly coupled to an exhaust manifold of the engine and a compressor fluidly coupled to an intake manifold of the engine, and an electric motor coupled to a rotatable shaft connected between the compressor and the variable geometry turbine. A target torque required to drive the compressor to achieve target compressor operating parameters is determined, a maximum available torque that can be supplied by the variable geometry turbine in response to a target exhaust gas flow through the variable geometry turbine is determined, and the electric motor is enabled to supply supplemental torque to the rotatable shaft if the target torque is greater than the maximum available torque.Type: ApplicationFiled: September 25, 2011Publication date: March 28, 2013Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
-
Publication number: 20130074496Abstract: A system and method are provided for controlling an air handling system for an internal combustion engine including a turbocharger having a variable geometry turbine and a compressor having a fresh air inlet fluidly coupled to ambient and to an air outlet of an electric air pump. An air pump enable value as determined a function of target engine speed and total fuel target values and an air flow target is determined as a function of a target fresh air flow value. Operation of the electric air pump is activated to supply supplemental air flow to the fresh air inlet of the compressor if the air pump enable value is greater than a threshold air pump enable value and the air flow target does not exceed a maximum flow value.Type: ApplicationFiled: September 25, 2011Publication date: March 28, 2013Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
-
Publication number: 20130080034Abstract: A system controlling an air handling system for an internal combustion engine. An EGR valve in-line with an EGR passageway fluidly coupled between exhaust and intake manifolds of the engine is controllable between fully closed open positions to control a flow rate of exhaust gas through the EGR passageway. A control circuit determines a pump enable value as a function of at least one of a target engine speed and a total fueling target, determines a maximum achievable flow rate of recirculated exhaust gas through the EGR passageway with the EGR valve in the fully open position, and activates an electric gas pump to increase the flow rate of exhaust gas through the EGR passageway if the pump enable value exceeds a threshold pump enable value and a target flow rate of recirculated exhaust gas through the EGR passageway is less than the maximum achievable flow rate.Type: ApplicationFiled: September 25, 2011Publication date: March 28, 2013Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma
-
Publication number: 20130080025Abstract: A system and method are provided for estimating the flow rate of air entering an air inlet of a turbocharger compressor. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a speed value corresponds to an operating speed of the turbocharger. The flow rate of air entering the air inlet of the turbocharger compressor is illustratively estimated as a function of the first pressure value, the second pressure value, the temperature value and the speed value.Type: ApplicationFiled: September 25, 2011Publication date: March 28, 2013Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
-
Publication number: 20130080024Abstract: A system and method are provided for estimating the operating speed of a turbocharger. A first pressure value corresponds to pressure at or near the air inlet of the compressor, and a second pressure value corresponds to pressure at or near the air outlet of the compressor. A temperature value corresponds to a temperature at or near the air inlet of the compressor, and a flow rate value corresponds to a flow rate of air entering the air inlet of the compressor. The operating speed of the turbocharger is estimated as a function of the first pressure value, the second pressure value, the temperature value and the flow rate value.Type: ApplicationFiled: September 25, 2011Publication date: March 28, 2013Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri
-
Publication number: 20130074492Abstract: A system is provided for controlling an air handling system for an internal combustion engine. A dual-stage turbocharger includes a high-pressure compressor and variable geometry turbine combination fluidly coupled to a low-pressure compressor and variable geometry turbine combination. A control circuit includes a memory having instructions stored therein that are executable by the control circuit to determine a target low-pressure compressor ratio, a target high-pressure compressor ratio, a target high-pressure compressor inlet temperature and a target high-pressure compressor inlet pressure as a function of a target outlet pressure of the high-pressure compressor and a temperature, a pressure and a target flow rate of air entering the air inlet of the low-pressure compressor, and to control the geometries of the low-pressure and high-pressure turbines as a function of the target low-pressure compressor ratio the target high-pressure compressor ratio respectively.Type: ApplicationFiled: September 25, 2011Publication date: March 28, 2013Inventors: John N. Chi, John M. Mulloy, Sriram S. Popuri, Timothy R. Frazier, Martin T. Books, Divakar Rajamohan, Indranil Brahma, Xi Wei
-
Patent number: 8322129Abstract: A method and system for controlling an exhaust temperature for an internal combustion engine is disclosed. The method and system include determining a range of acceptable charge flows within the internal combustion engine to meet a desired exhaust temperature. The method and system further include controlling the charge flows to fall within the range. Control strategies to utilize the charge flow as a lever to control turbine outlet temperature are disclosed. These strategies utilize the inversion of the cylinder outlet temperature virtual sensor as well as a new turbine outlet temperature virtual sensor to determine the charge flow required to achieve the desired turbine outlet temperature given the current turbine inlet and outlet pressure, SOI, charge pressure, charge temperature, fueling, and engine speed.Type: GrantFiled: February 16, 2006Date of Patent: December 4, 2012Assignee: Cummins, Inc.Inventors: Thomas A. Dollmeyer, Jennifer W. Rumsey, Larry J. Brackney, B. Jerry Song, J. Steve Wills, John N. Chi, John M. Mulloy
-
Patent number: 8082736Abstract: One embodiment of the present invention is an internal combustion engine system that includes an internal combustion engine, a turbocharger with a compressor and a turbine and a gas flow pathway defined therebetween, one or more pressure sensors to detect pressure along the gas flow pathway, an emission control device structured to receive exhaust from the turbocharger, and a controller responsive to input from the one or more pressure sensors. The controller determines a control signal indicative of turbine outlet temperature as a function of such input, and selectively generates an output signal to adjust temperature of the exhaust provided to the emission control device from the turbocharger in response to the control signal.Type: GrantFiled: January 4, 2006Date of Patent: December 27, 2011Assignee: Cummins Inc.Inventor: John M. Mulloy
-
Patent number: 7658068Abstract: A method for controlling a variable geometry turbine of a turbocharger to increase the temperature of the exhaust gas delivered to an after-treatment system. In one form the method includes reducing a fluid flow area to the turbine below a normal size and bypassing a portion of the exhaust gas around a plurality of guide vanes.Type: GrantFiled: April 23, 2007Date of Patent: February 9, 2010Assignee: Cummins Inc.Inventors: John M. Mulloy, John F. Parker, Sam Pringle