Patents by Inventor John M. SHELTON

John M. SHELTON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12076014
    Abstract: A method of applying a buttress to a surgically cut and stapled site uses an end effector with a buttress applier cartridge assembly to load one or more buttress assemblies to the end effector. The buttress assemblies each include a buttress to support a staple formed therein as well an adhesive for adhering to the end effector. The adhesive of the buttress assemblies can include a pattern to assist in both attachment to the end effector and release from the end effector after cutting and stapling a tissue site. The buttress applier cartridge can include features that accommodate end effectors having various tip configurations, including straight tips and curved or bent tips.
    Type: Grant
    Filed: February 6, 2023
    Date of Patent: September 3, 2024
    Assignee: Cilag GmbH International
    Inventors: Michael J. Vendely, Trevor J. Barton, Pamela M. Ridgley, Rebecca Spatholt, Christopher J. Hess, Heather Strang, Mark S. Zeiner, John V. Hunt, Emily A. Schellin, Frederick E. Shelton, IV, Jason L. Harris, David T. Krumanaker
  • Patent number: 12053224
    Abstract: An end-effector is disclosed. The end-effector includes a clamp arm and an ultrasonic blade configured to acoustically couple to an ultrasonic transducer and electrically couple to a pole of an electrical generator. The clamp arm includes a clamp jaw and an electrode configured to electrically couple to an opposite pole of the electrical generator. In one configuration, the electrode is segmented. In another configuration, the ultrasonic blade includes electrically insulative material deposited on selected areas to prevent electrical shorting in the event of the ultrasonic blade contacts the electrode. In another configuration, the clamp arm, the ultrasonic blade, or both include selectively coated components.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: August 6, 2024
    Assignee: Cilag GmbH International
    Inventors: Stephen M. Leuck, John E. Brady, Nina Mastroianni, Wei Guo, Geoffrey S. Strobl, Craig N. Faller, Jeffrey D. Messerly, Frederick E. Shelton, IV
  • Publication number: 20240252172
    Abstract: A method of applying a buttress to a surgically cut and stapled site uses an end effector with a buttress applier cartridge assembly to load one or more buttress assemblies to the end effector. The buttress assemblies each include a buttress to support a staple formed therein as well an adhesive for adhering to the end effector. The adhesive of the buttress assemblies can include a pattern to assist in both attachment to the end effector and release from the end effector after cutting and stapling a tissue site. The buttress applier cartridge can include features that accommodate end effectors having various tip configurations, including straight tips and curved or bent tips.
    Type: Application
    Filed: February 13, 2024
    Publication date: August 1, 2024
    Inventors: Michael J. Vendely, Trevor J. Barton, Pamela M. Ridgley, Rebecca Spatholt, Christopher J. Hess, Heather Strang, Mark S. Zeiner, John V. Hunt, Emily A. Scheliin, Frederick E. Shelton, IV, Jason L. Harris, David T. Krumanaker
  • Publication number: 20220072156
    Abstract: Duchenne muscular dystrophy (DMD) is an inherited X-linked disease caused by mutations in the gene encoding dystrophin, a protein required for muscle fiber integrity. The disclosure reports CRISPR/Cas9-mediated gene editing (Myo-editing) is effective at correcting the dystrophin gene mutation in the mdx mice, a model for DMD. Further, the disclosure reports optimization of germline editing of mdx mice by engineering the permanent skipping of mutant exon (exon 23) and extending exon skipping to also correct the disease by post-natal delivery of adeno-associate virus (AAV). AAV-mediated Myo-editing can efficiently rescue the reading frame of dystrophin in mdx mice in vivo. The disclosure reports means of Myo-editing-mediated exon skipping has been successfully advanced from somatic tissues in mice to human DMD patients-derived iPSCs (induced pluripotent stem cells).
    Type: Application
    Filed: August 17, 2021
    Publication date: March 10, 2022
    Applicant: The Board of Regents of the University of Texas System
    Inventors: Eric N. OLSON, Chengzu LONG, John R. McANALLY, John M. SHELTON, Rhonda BASSEL-DUBY
  • Publication number: 20160058889
    Abstract: Duchenne muscular dystrophy (DMD) is an inherited X-linked disease caused by mutations in the gene encoding dystrophin, a protein required for muscle fiber integrity. The disclosure reports CRISPR/Cas9-mediated gene editing (Myo-editing) is effective at correcting the dystrophin gene mutation in the mdx mice, a model for DMD. Further, the disclosure reports optimization of germline editing of mdx mice by engineering the permanent skipping of mutant exon (exon 23) and extending exon skipping to also correct the disease by post-natal delivery of adeno-associate virus (AAV). AAV-mediated Myo-editing can efficiently rescue the reading frame of dystrophin in mdx mice in vivo. The disclosure reports means of Myo-editing-mediated exon skipping has been successfully advanced from somatic tissues in mice to human DMD patients-derived iPSCs (induced pluripotent stem cells).
    Type: Application
    Filed: August 11, 2015
    Publication date: March 3, 2016
    Inventors: Eric N. OLSON, Chengzu LONG, John R. MCANALLY, John M. SHELTON, Rhonda BASSEL-DUBY