Patents by Inventor John M. Storey

John M. Storey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180323570
    Abstract: A lasing device includes an active layer comprising a cholesteric liquid crystal material and a laser dye, and a liquid crystal cell including spaced apart substrates defining a cell gap in which the active layer is disposed. The substrates include electrodes arranged to bias the active layer into an oblique helicoidal (ChOH) state. At least one substrate of the liquid crystal cell is optically transparent for a lasing wavelength range of the device.
    Type: Application
    Filed: November 15, 2016
    Publication date: November 8, 2018
    Applicant: Kent State University
    Inventors: Jie Xiang, Andrii Varanytsia, Fred Minkowski, Oleg D. Lavrentovich, Peter Palffy-Muhoray, Corrie T. Imrie, Daniel E. Paterson, John M. Storey
  • Patent number: 9732277
    Abstract: A liquid crystal cell includes substrates defining a gap and electrodes having one of (i) an in-plane geometry generating an electric field parallel with the substrates and (ii) a top-down geometry generating an electric field across the gap between the two spaced apart substrates. A liquid crystal material disposed in the gap between the substrates comprises a chiral nematic material formed by a mixture of: 1-(4-cyanobiphenyl-4?-yl)-6-(4-cyanobiphenyl-4?-yloxy)hexane (CB6OCB) or ?,?-bis(4,4-cyanobiphenyl)nonane (CB9CB) dimeric liquid crystal material; at least one additional dimeric liquid crystal material; and a chiral dopant.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: August 15, 2017
    Assignees: KENT STATE UNIVERSITY, THE UNIVERSITY COURT OF THE UNIVERSITY OF ABERDEEN
    Inventors: Oleg D. Lavrentovich, Jie V. Xiang, Sergij V. Shiyanovskii, Corrie T. Imrie, Daniel A. Paterson, John M. Storey
  • Patent number: 8357234
    Abstract: An apparatus and method for rapid fractionation of hydrocarbon phases in a sample fluid stream are disclosed. Examples of the disclosed apparatus and method include an assembly of elements in fluid communication with one another including one or more valves and at least one sorbent chamber for removing certain classifications of hydrocarbons and detecting the remaining fractions using a detector. The respective ratios of hydrocarbons are determined by comparison with a non separated fluid stream.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: January 22, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Charles S. Sluder, John M. Storey, Samuel A. Lewis, Sr.
  • Publication number: 20120017760
    Abstract: An apparatus and method for rapid fractionation of hydrocarbon phases in a sample fluid stream are disclosed. Examples of the disclosed apparatus and method include an assembly of elements in fluid communication with one another including one or more valves and at least one sorbent chamber for removing certain classifications of hydrocarbons and detecting the remaining fractions using a detector. The respective ratios of hydrocarbons are determined by comparison with a non separated fluid stream.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 26, 2012
    Applicant: UT-BATTELLE, LLC
    Inventors: Charles S. Sluder, John M. Storey, Samuel A. Lewis, SR.
  • Patent number: 6422002
    Abstract: A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: July 23, 2002
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John H. Whealton, Gregory R. Hanson, John M. Storey, Richard J. Raridon, Jeffrey S. Armfield, Timothy S. Bigelow, Ronald L. Graves
  • Patent number: 6190507
    Abstract: A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.
    Type: Grant
    Filed: July 23, 1999
    Date of Patent: February 20, 2001
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: John H. Whealton, Gregory R. Hanson, John M. Storey, Richard J. Raridon, Jeffrey S. Armfield, Timothy S. Bigelow, Ronald L. Graves