Patents by Inventor John M. Tamkin

John M. Tamkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11865046
    Abstract: A method and apparatus for performing ophthalmic laser surgery using a pulsed laser beam is provided. The method includes establishing an initial cutting pattern comprising a plurality of original photodisruption points, establishing an enhanced cutting pattern comprising a plurality of enhanced photodisruption points selected to decrease potential adverse effects due to patient movement and having increased density over a fixed area as compared with the plurality of original photodisruption points, and performing an ocular surgical procedure according to the enhanced cutting pattern Enhanced cutting patterns may include circular cuts around the periphery of a capsule, vertical side cuts for lens fragmentation, raster lamellar cuts, and grid lamellar cuts. Each photodisruption point in the initial cutting pattern and the enhanced cutting pattern comprises a laser target point.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: January 9, 2024
    Assignee: AMO Development, LLC
    Inventors: Hong Fu, John M. Tamkin
  • Publication number: 20220347013
    Abstract: A method and apparatus for performing ophthalmic laser surgery using a pulsed laser beam is provided. The method includes establishing an initial cutting pattern comprising a plurality of original photodisruption points, establishing an enhanced cutting pattern comprising a plurality of enhanced photodisruption points selected to decrease potential adverse effects due to patient movement and having increased density over a fixed area as compared with the plurality of original photodisruption points, and performing an ocular surgical procedure according to the enhanced cutting pattern Enhanced cutting patterns may include circular cuts around the periphery of a capsule, vertical side cuts for lens fragmentation, raster lamellar cuts, and grid lamellar cuts. Each photodisruption point in the initial cutting pattern and the enhanced cutting pattern comprises a laser target point.
    Type: Application
    Filed: July 18, 2022
    Publication date: November 3, 2022
    Inventors: Hong Fu, John M. Tamkin
  • Patent number: 11399981
    Abstract: A method and apparatus for performing ophthalmic laser surgery using a pulsed laser beam is provided. The method includes establishing an initial cutting pattern comprising a plurality of original photodisruption points, establishing an enhanced cutting pattern comprising a plurality of enhanced photodisruption points selected to decrease potential adverse effects due to patient movement and having increased density over a fixed area as compared with the plurality of original photodisruption points, and performing an ocular surgical procedure according to the enhanced cutting pattern Enhanced cutting patterns may include circular cuts around the periphery of a capsule, vertical side cuts for lens fragmentation, raster lamellar cuts, and grid lamellar cuts. Each photodisruption point in the initial cutting pattern and the enhanced cutting pattern comprises a laser target point.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: August 2, 2022
    Assignee: AMO Development, LLC
    Inventors: Hong Fu, John M. Tamkin
  • Publication number: 20210346195
    Abstract: A system and method for performing ophthalmic surgery using an ultra-short pulsed laser is provided. The system includes a laser engine configured to provide an ultra-short pulsed laser beam, optics configured to direct the laser beam to an undocked eye of a patient, an eye tracker configured to measure five degrees of freedom of movement of the undocked eye, an optical coherence tomography module configured to measure depth of the undocked eye, and a controller configured to control laser beam position on the undocked eye toward a desired laser pattern based on depth and the five degrees of freedom of movement of the undocked eye. Adaptive optics are also provided. Also disclosed are a scleral ring including fiducial markings and a compliant contact lens and fluid tillable contact lens configured to facilitate ultra-short pulsed laser surgery while reducing or eliminating eye docking requirements.
    Type: Application
    Filed: July 21, 2021
    Publication date: November 11, 2021
    Inventors: Hon M. Lee, Peter-Patrick De Guzman, Victor Kardos, Hong Fu, Robert G. Heitel, John M. Tamkin, Mikhail Levin, Bing Wang
  • Patent number: 11076990
    Abstract: A system and method for performing ophthalmic surgery using an ultra-short pulsed laser is provided. The system includes a laser engine configured to provide an ultra-short pulsed laser beam, optics configured to direct the laser beam to an undocked eye of a patient, an eye tracker configured to measure five degrees of freedom of movement of the undocked eye, an optical coherence tomography module configured to measure depth of the undocked eye, and a controller configured to control laser beam position on the undocked eye toward a desired laser pattern based on depth and the five degrees of freedom of movement of the undocked eye. Adaptive optics are also provided. Also disclosed are a scleral ring including fiducial markings and a compliant contact lens and fluid tillable contact lens configured to facilitate ultra-short pulsed laser surgery while reducing or eliminating eye docking requirements.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 3, 2021
    Assignee: AMO Development, LLC
    Inventors: Hon M. Lee, Peter-Patrick De Guzman, Victor Kardos, Hong Fu, Robert G. Heitel, John M. Tamkin, Mikhail Levin, Bing Wang
  • Publication number: 20190358085
    Abstract: A method and apparatus for performing ophthalmic laser surgery using a pulsed laser beam is provided. The method includes establishing an initial cutting pattern comprising a plurality of original photodisruption points, establishing an enhanced cutting pattern comprising a plurality of enhanced photodisruption points selected to decrease potential adverse effects due to patient movement and having increased density over a fixed area as compared with the plurality of original photodisruption points, and performing an ocular surgical procedure according to the enhanced cutting pattern Enhanced cutting patterns may include circular cuts around the periphery of a capsule, vertical side cuts for lens fragmentation, raster lamellar cuts, and grid lamellar cuts. Each photodisruption point in the initial cutting pattern and the enhanced cutting pattern comprises a laser target point.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 28, 2019
    Inventors: Hong Fu, John M. Tamkin
  • Patent number: 10376415
    Abstract: A method and apparatus for performing ophthalmic laser surgery using a pulsed laser beam is provided. The method includes establishing an initial cutting pattern comprising a plurality of original photodisruption points, establishing an enhanced cutting pattern comprising a plurality of enhanced photodisruption points selected to decrease potential adverse effects due to patient movement and having increased density over a fixed area as compared with the plurality of original photodisruption points, and performing an ocular surgical procedure according to the enhanced cutting pattern. Enhanced cutting patterns may include circular cuts around the periphery of a capsule, vertical side cuts for lens fragmentation, raster lamellar cuts, and grid lamellar cuts. Each photodisruption point in the initial cutting pattern and the enhanced cutting pattern comprises a laser target point.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: August 13, 2019
    Assignee: AMO DEVELOPMENT, LLC
    Inventors: Hong Fu, John M. Tamkin
  • Publication number: 20180110648
    Abstract: A method and apparatus for performing ophthalmic laser surgery using a pulsed laser beam is provided. The method includes establishing an initial cutting pattern comprising a plurality of original photodisruption points, establishing an enhanced cutting pattern comprising a plurality of enhanced photodisruption points selected to decrease potential adverse effects due to patient movement and having increased density over a fixed area as compared with the plurality of original photodisruption points, and performing an ocular surgical procedure according to the enhanced cutting pattern Enhanced cutting patterns may include circular cuts around the periphery of a capsule, vertical side cuts for lens fragmentation, raster lamellar cuts, and grid lamellar cuts. Each photodisruption point in the initial cutting pattern and the enhanced cutting pattern comprises a laser target point.
    Type: Application
    Filed: December 21, 2017
    Publication date: April 26, 2018
    Inventors: Hong Fu, John M. Tamkin
  • Publication number: 20180110647
    Abstract: A system and method for performing ophthalmic surgery using an ultra-short pulsed laser is provided. The system includes a laser engine configured to provide an ultra-short pulsed laser beam, optics configured to direct the laser beam to an undocked eye of a patient, an eye tracker configured to measure five degrees of freedom of movement of the undocked eye, an optical coherence tomography module configured to measure depth of the undocked eye, and a controller configured to control laser beam position on the undocked eye toward a desired laser pattern based on depth and the five degrees of freedom of movement of the undocked eye. Adaptive optics are also provided. Also disclosed are a scleral ring including fiducial markings and a compliant contact lens and fluid tillable contact lens configured to facilitate ultra-short pulsed laser surgery while reducing or eliminating eye docking requirements.
    Type: Application
    Filed: December 19, 2017
    Publication date: April 26, 2018
    Inventors: Hon M. Lee, Peter-Patrick De Guzman, Victor Kardos, Hong Fu, Robert G. Heitel, John M. Tamkin, Mikhail Levin, Bing Wang
  • Patent number: 9861527
    Abstract: A method and apparatus for performing ophthalmic laser surgery using a pulsed laser beam is provided. The method includes establishing an initial cutting pattern comprising a plurality of original photodisruption points, establishing an enhanced cutting pattern comprising a plurality of enhanced photodisruption points selected to decrease potential adverse effects due to patient movement and having increased density over a fixed area as compared with the plurality of original photodisruption points, and performing an ocular surgical procedure according to the enhanced cutting pattern. Enhanced cutting patterns may include circular cuts around the periphery of a capsule, vertical side cuts for lens fragmentation, raster lamellar cuts, and grid lamellar cuts. Each photodisruption point in the initial cutting pattern and the enhanced cutting pattern comprises a laser target point.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: January 9, 2018
    Assignee: AMO Development, LLC
    Inventors: Hong Fu, John M. Tamkin
  • Patent number: 9798150
    Abstract: A system for distributing auto-stereoscopic images, a parallax blocking mask and methods for producing a parallax blocking mask. A parallax blocking mask is provided as an “add-on” for an existing image display device having a flat panel type display screen. The mask is tailored to the needs of the existing device and delivered to a remote user of the display device. The user mounts the mask to the display device so that the mask overlies the display screen. 3D content in the form of composite stereoscopic images derived from one or more stereoscopic image pairs, and application software, are downloaded to the display device over the Internet, and the application software interleaves the composite stereoscopic images for display on the display screen while the mask is in place. Use of a parallax blocking mask having variable edge transitions, a duty cycle less than fifty percent, or both, is disclosed.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: October 24, 2017
    Assignee: Broadcast 3DTV, Inc.
    Inventors: Sidney Kassouf, John M. Tamkin
  • Publication number: 20140276674
    Abstract: A system and method for performing ophthalmic surgery using an ultra-short pulsed laser is provided. The system includes a laser engine configured to provide an ultra-short pulsed laser beam, optics configured to direct the laser beam to an undocked eye of a patient, an eye tracker configured to measure five degrees of freedom of movement of the undocked eye, an optical coherence tomography module configured to measure depth of the undocked eye, and a controller configured to control laser beam position on the undocked eye toward a desired laser pattern based on depth and the five degrees of freedom of movement of the undocked eye. Adaptive optics are also provided. Also disclosed are a scleral ring including fiducial markings and a compliant contact lens and fluid fillable contact lens configured to facilitate ultra-short pulsed laser surgery while reducing or eliminating eye docking requirements.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 18, 2014
    Inventors: Hon M. Lee, Peter Patrick De Guzman, Victor Kardos, Hong Fu, Robert G. Heitel, John M. Tamkin, Mikhail Levin, Bing Wang
  • Publication number: 20140200563
    Abstract: A method and apparatus for performing ophthalmic laser surgery using a pulsed laser beam is provided. The method includes establishing an initial cutting pattern comprising a plurality of original photodisruption points, establishing an enhanced cutting pattern comprising a plurality of enhanced photodisruption points selected to decrease potential adverse effects due to patient movement and having increased density over a fixed area as compared with the plurality of original photodisruption points, and performing an ocular surgical procedure according to the enhanced cutting pattern. Enhanced cutting patterns may include circular cuts around the periphery of a capsule, vertical side cuts for lens fragmentation, raster lamellar cuts, and grid lamellar cuts. Each photodisruption point in the initial cutting pattern and the enhanced cutting pattern comprises a laser target point.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 17, 2014
    Applicant: AMO Development, LLC.
    Inventors: Hong Fu, John M. Tamkin
  • Patent number: 7688431
    Abstract: The invention relates to an apparatus for comparatively demonstrating the optical properties of eyewear lenses, particularly dispersion. The apparatus includes an illumination source that provides output of shorter wavelength visible light and longer wavelength visible light, a target that creates an image on the light path, a test lens made of eyewear lens material that is illuminated by the light path from the target, and a detector that displays the image acted upon and transmitted through the test lens. The test lens can be interchangeably replaced with another test lens, for comparison of each lens' optical properties. Alternate configurations include multiple light paths, for simultaneous viewing of images through different test lenses.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: March 30, 2010
    Assignee: Younger Mfg. Co.
    Inventors: Thomas A. Balch, John M. Tamkin, Nancy L. S. Yamasaki, Jotinderpal S. Sidhu
  • Patent number: 6107622
    Abstract: In a light raster scanning system imaging a medium located on a movable stage and using bidirectional scanning, i.e. scanning during stage movement in two opposing directions, the problem of chevron artifacts (angle errors), due to the different stage movement directions, is overcome by a system of reflective optics including two optical elements dynamically movable relative to one another. One of the optical reflective elements is tilted or rotated relative to the other to compensate for the angle error causing the chevron artifacts. The amount of this tilt is dynamically altered depending on the direction of stage travel and also may be dynamically adjusted to maintain linearity of the scan pattern in spite of any other irregularities in stage velocity. Also an autofocus feature is provided, whereby the two reflective elements are moved relative to one another to dynamically alter the focus of the light beam onto the medium and hence overcome any defocus problems due to irregularities in the medium surface.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: August 22, 2000
    Assignee: Etec Systems, Inc.
    Inventors: Shi-Kay Yao, John M. Tamkin
  • Patent number: 6084706
    Abstract: A laser scanner includes an optical relay which reforms an image from a scan lens at a location that provides additional working distance. The optical relay contains primarily reflective elements which provide achromatic focusing for ultraviolet light. One embodiment of the optical relay has a magnifying power of about 1 and use spherical mirrors in a configuration where image distortion and aberrations cancels. A second optical relay provides a reduction in image size using aspherical mirrors such as parabolic and elliptical mirrors. An additional lens cancels distortion and aberration introduced in the second optical relay. The additional working distance allows insertion optical devices such as beamsplitters and chevron correction and autofocus optics in the optical path of the optical relay.
    Type: Grant
    Filed: May 20, 1998
    Date of Patent: July 4, 2000
    Assignee: Etec Systems, Inc.
    Inventors: John M. Tamkin, Joseph P. Donahue
  • Patent number: 5548394
    Abstract: A scanning fingerprint reader provides a set of digital data representing interface topology of a fingerprint pressed against a platen (20). The platen (20) is formed by one surface of a prism (10) utilizing total internal reflection of an illuminating beam (30) directed at an interior surface of the prism. The beam (37) that is output from the prism is fed through a scanning lens (40) to a scanning mirror (48) that causes the fingerprint image (68) to scan across a linear array (60) of CCD sensors that is repetitively sampled to provide a print readout of the entire surface of the prism for reading a slap print. The signal from the CCD array is read out and digitized (72,74,76) to provide a serial bit stream (78) representing the set of multiple fingerprints on the platen. An optical architecture (40,48,56) employing dual telecentricity eliminates keystoning distortion.
    Type: Grant
    Filed: March 16, 1995
    Date of Patent: August 20, 1996
    Assignee: Printrak International Inc.
    Inventors: Richard M. Giles, Daniel J. Driscoll, Eliseo Ranalli, John M. Tamkin, Bradley Scott