Patents by Inventor John Macoviak

John Macoviak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120278100
    Abstract: Disclosed herein, in certain embodiments, are systems and methods for extending patient care effectiveness of a licensed primary healthcare provider facility, group, or individual and providing professional answering and triage services, comprising: a live, remote, adjunct healthcare provider, wherein said adjunct provider is credentialed by said licensed primary healthcare provider facility, group, or individual to provide remote adjunct care for one or more patients, wherein said adjunct provider is covered by medical malpractice insurance, wherein said patients are legally under the care of said licensed primary healthcare provider facility, group, or individual; a software module for providing said remote adjunct healthcare provider access to one or more electronic health records for said one or more patients; and a communications link between said remote adjunct healthcare provider and said patient or one or more onsite patient caregivers.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 1, 2012
    Applicant: Annuary Healthcare, Inc.
    Inventor: John Macoviak
  • Publication number: 20080065204
    Abstract: An implant for supplementing, repairing, or replacing a native heart valve leaflet or leaflets provides a scaffold, which defines a pseudo-annulus. The implant further has at least two struts in generally oppositely spaced apart positions on the scaffold. The scaffold can be placed in an elastically loaded condition in a heart with the struts engaging tissue at or near the leaflet commissures of a heart valve annulus, to reshape the annulus for leaflet coaptation. The implant further provides a neoleaflet element coupled to the scaffold within pseudo-annulus, to provide a one-way valve function.
    Type: Application
    Filed: October 31, 2007
    Publication date: March 13, 2008
    Inventors: John Macoviak, Robert Chang, David Rahdert, Timothy Machold, Rick Soss
  • Publication number: 20060252984
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the left atrium, which allow mitral valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant and a fixed length implant. The implants or systems of implants and methods may also utilize a bridge stop to secure the implant, and the methods of implantation employ various tools.
    Type: Application
    Filed: March 27, 2006
    Publication date: November 9, 2006
    Inventors: David Rahdert, Timothy Machold, Robert Chang, John Macoviak
  • Publication number: 20060106279
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the left atrium, which allow mitral valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial adjustability and retrievability years after implant. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant and a fixed length implant. The implants or systems of implants and methods may also utilize an adjustable bridge stop to secure the implant, and the methods of implantation employ various tools.
    Type: Application
    Filed: October 21, 2005
    Publication date: May 18, 2006
    Inventors: Timothy Machold, David Scott, David Rahdert, David Tholfsen, Robert Chang, John Macoviak
  • Publication number: 20060106456
    Abstract: Devices, systems, and methods employ an implant that is sized and configured to attach to the annulus of a dysfunctional heart valve annulus. In use, the implant extends across the major axis of the annulus above and/or along the valve annulus. The implant reshapes the major axis dimension and/or other surrounding anatomic structures. The implant restores to the heart valve annulus and leaflets a more functional anatomic shape and tension. The more functional anatomic shape and tension are conducive to coaptation of the leaflets, which, in turn, reduces retrograde flow or regurgitation. The implant improves function to the valve, without surgically cinching, resecting, and/or fixing in position large portions of a dilated annulus, or without the surgical fixation of ring-like structures.
    Type: Application
    Filed: October 1, 2003
    Publication date: May 18, 2006
    Inventors: Timothy Machold, David Rahdert, John Macoviak, Robert Chang, Rick Soss
  • Publication number: 20060106278
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the left atrium, which allow mitral valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial adjustability and retrievability years after implant. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant and a fixed length implant. The implants or systems of implants and methods may also utilize an adjustable bridge stop to secure the implant, and the methods of implantation employ various tools.
    Type: Application
    Filed: October 21, 2005
    Publication date: May 18, 2006
    Inventors: Timothy Machold, David Scott, David Rahdert, David Tholfsen, Robert Chang, John Macoviak
  • Publication number: 20060069430
    Abstract: Devices, systems and methods retain a native heart valve leaflet to prevent retrograde flow. The devices, systems, and methods employ an implant that, in use, rests adjacent a valve annulus and includes a retaining structure that is sized and shaped to overlay at least a portion of one or more native valve leaflets. The retaining structure retains the leaflet or leaflets it overlays, to resist leaflet eversion and/or prolapse. In this way, the implant prevents or reduces regurgitation. The implant does not interfere significantly with the opening of and blood flow through the leaflets during periods of antegrade flow.
    Type: Application
    Filed: October 1, 2003
    Publication date: March 30, 2006
    Inventors: David Rahdert, John Macoviak, Timothy Machold, Robert Chang, Rick Soss
  • Publication number: 20050267573
    Abstract: Devices, systems and methods supplement, repair, or replace a native heart valve. The devices, systems, and methods employ an implant that, in use, extends adjacent a valve annulus. The implant includes a mobile neoleaflet element that occupies the space of at least a portion of one native valve leaflet. The implant mimics the one-way valve function of a native leaflet, to resist or prevent retrograde flow. The implant restores normal coaptation of the leaflets to resist retrograde flow, thereby resisting eversion and/or prolapse, which, in turn, reduces regurgitation.
    Type: Application
    Filed: October 1, 2003
    Publication date: December 1, 2005
    Inventors: John Macoviak, Robert Chang, David Rahdert, Timothy Machold, Rick Soss
  • Publication number: 20050228495
    Abstract: A valve prosthesis is sized and configured to rest within a blood path subject to antegrade and retrograde blood flow. A trestle element on the prosthesis extends across the blood path. A leaflet assembly is suspended from the trestle element and extends into the blood path in alignment with blood flow. At least one mobile leaflet member on the leaflet assembly is sized and configured to assume orientations that change according to blood flow direction. The mobile leaflet member has a first orientation that permits antegrade blood flow and a second orientation that resists retrograde blood flow. The valve prosthesis, when implanted in a heart chamber or great vessel, serves to supplement and/or repair and/or replace native one-way heart valve function.
    Type: Application
    Filed: January 14, 2005
    Publication date: October 13, 2005
    Inventor: John Macoviak
  • Publication number: 20050228422
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the left atrium, which allow mitral valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant and a fixed length implant. The implants or systems of implants and methods may also utilize a bridge stop to secure the implant, and the methods of implantation employ various tools.
    Type: Application
    Filed: March 25, 2005
    Publication date: October 13, 2005
    Inventors: Timothy Machold, Robert Chang, John Macoviak, David Rahdert
  • Publication number: 20050228468
    Abstract: Devices, systems and methods establish scaffold-like structures within the heart or a body cavity. The scaffold-like structures establish a stable platform that makes it possible to accomplish a desired therapeutic and/or diagnostic objective in a targeted fashion in one or more tissue regions. The desired therapeutic and/or diagnostic objectives can include, e.g., (i) the delivery of various chemical, drug, and/or biological agents (in liquid, gel, or wafer form) into contact on or in the tissue regions, to accomplish, e.g., ablation or other therapeutic objectives in a controlled, precise fashion; and/or (ii) the delivery of mechanical, heat, cooling, or electrical energy to the tissue region—e.g.
    Type: Application
    Filed: April 1, 2004
    Publication date: October 13, 2005
    Inventors: John Macoviak, David Rahdert
  • Publication number: 20050222488
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the left atrium, which allow mitral valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant and a fixed length implant. The implants or systems of implants and methods may also utilize a bridge stop to secure the implant, and the methods of implantation employ various tools.
    Type: Application
    Filed: March 25, 2005
    Publication date: October 6, 2005
    Inventors: Robert Chang, John Macoviak, David Rahdert, Timothy Machold
  • Publication number: 20050222489
    Abstract: Implants or systems of implants and methods apply a selected force vector or a selected combination of force vectors within or across the left atrium, which allow mitral valve leaflets to better coapt. The implants or systems of implants and methods make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants and methods also make use of strong fluoroscopic landmarks. The implants or systems of implants and methods make use of an adjustable implant and a fixed length implant. The implants or systems of implants and methods may also utilize a bridge stop to secure the implant, and the methods of implantation employ various tools.
    Type: Application
    Filed: March 25, 2005
    Publication date: October 6, 2005
    Inventors: David Rahdert, Timothy Machold, Robert Chang, John Macoviak
  • Publication number: 20050216079
    Abstract: A heart valve implant has a body sized and configured to rest near or within a heart valve annulus. A plurality of spaced-apart retainers extend outwardly from the body to contact tissue near or within the heart valve annulus. The retainers are sized and configured to secure the body to the heart valve annulus. The implant can be secured, e.g., without the use of sutures.
    Type: Application
    Filed: April 12, 2005
    Publication date: September 29, 2005
    Inventor: John MaCoviak
  • Publication number: 20050055089
    Abstract: Implants or systems of implants apply a selected force vector or a selected combination of force vectors within or across the left atrium, which allow mitral valve leaflets to better coapt. The implants or systems of implants make possible rapid deployment, facile endovascular delivery, and full intra-atrial retrievability. The implants or systems of implants also make use of strong fluoroscopic landmarks.
    Type: Application
    Filed: July 19, 2004
    Publication date: March 10, 2005
    Inventors: John Macoviak, Robert Chang, David Rahdert, Timothy Machold
  • Publication number: 20050010287
    Abstract: Devices, systems and methods supplement, repair, or replace a native heart valve. The devices, systems, and methods employ an implant that, in use, extends adjacent a valve annulus. The implant includes a mobile neoleaflet element that occupies the space of at least a portion of one native valve leaflet. The implant mimics the one-way valve function of a native leaflet, to resist or prevent retrograde flow. The implant restores normal coaptation of the leaflets to resist retrograde flow, thereby resisting eversion and/or prolapse, which, in turn, reduces regurgitation.
    Type: Application
    Filed: October 1, 2003
    Publication date: January 13, 2005
    Inventors: John Macoviak, Robert Chang, David Rahdert, Timothy Machold, Rick Soss
  • Patent number: 6702773
    Abstract: A system for establishing differential perfusion without the use of an occlusion balloon or other flow separator devices. The flows through two lumens are controlled such that the blood flow issuing from one lumen terminating in the aortic arch supplies the entire demand of the cerebral subcirculation while the blood flow issuing from a second lumen terminating in the descending aorta supplies the entire demand of the corporeal subcirculation. When the two flows are properly balanced, an inversion layer forms therebetween and no intermixing of the two flows takes place.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: March 9, 2004
    Assignee: Cardeon Corporation
    Inventors: John Macoviak, Brady Esch, Mike Lee, Wilfred J. Samson
  • Patent number: 6669680
    Abstract: The invention is a catheter with a fluid flow divider positioned near the distal end of the catheter for dividing a first lumen into two channels at a point where a second lumen branches from the first lumen, and for selectively perfusing the branch lumen. The invention is particularly suited for use in the aortic arch. The fluid flow divider may comprise one or more inflatable chambers or one or more deployable shrouds comprising a plurality of arms with a webbing extending between adjacent arms. The inflatable chambers may be relatively noncompliant or they may be compliant, exhibiting elastic behavior after initial inflation, to closely fit the aortic lumen size and curvature. The catheter may further include one or more additional or auxiliary flow control members located upstream or downstream from the fluid flow divider to further segment the patient's circulatory system for selective perfusion to different organ systems within the body or to assist in anchoring the catheter in a desired position.
    Type: Grant
    Filed: May 4, 2000
    Date of Patent: December 30, 2003
    Inventors: John Macoviak, Wilfred Samson
  • Publication number: 20030138350
    Abstract: A circulatory support system and method for circulatory support are described for performing cardiopulmonary bypass using differential perfusion and/or isolated segmental perfusion of the circulatory system. The circulatory support system includes one or more venous cannulae for draining blood from the venous side of the patient's circulatory system, one or more arterial cannulae for perfusing the arterial side of the patient's circulatory system, and one or more blood circulation pumps connected between the venous cannulae and the arterial cannulae. The arterial cannulae and the venous cannulae of the circulatory support system may take one of several possible configurations. The circulatory support system is configured to segment a patient's circulatory system into one or more isolated circulatory loops.
    Type: Application
    Filed: November 27, 2002
    Publication date: July 24, 2003
    Inventors: John MacOviak, Wilfred J. Samson, Steve Baker, James J. Leary
  • Patent number: 6508777
    Abstract: A circulatory support system and method for circulatory support are described for performing cardiopulmonary bypass using differential perfusion and/or isolated segmental perfusion of the circulatory system. The circulatory support system includes one or more venous cannulae for draining blood from the venous side of the patient's circulatory system, one or more arterial cannulae for perfusing the arterial side of the patient's circulatory system, and one or more blood circulation pumps connected between the venous cannulae and the arterial cannulae. The arterial cannulae and the venous cannulae of the circulatory support system may take one of several possible configurations. The circulatory support system is configured to segment a patient's circulatory system into one or more isolated circulatory loops.
    Type: Grant
    Filed: May 6, 1999
    Date of Patent: January 21, 2003
    Assignee: Cardeon Corporation
    Inventors: John Macoviak, Wilfred J. Samson, Steve Baker, James J. Leary