Patents by Inventor John Mark Pauly

John Mark Pauly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6975751
    Abstract: A method for reconstructing non-uniformly sampled data to create an image includes: receiving a new partial data set, the new partial data set including a vector of non-uniformly sampled data at k-space positions; subtracting an old partial data set at the same k-space positions from the new partial data set to create a difference vector; gridding the difference vector to create a difference matrix; adding the difference matrix to a frame of previously gridded data to create a new frame; and transforming the new frame to create the image. In one embodiment, gridding includes constructing a gridding table for a data point in a complete data set, and convolving a data point in the difference vector with the gridding table. In another embodiment at least one of a grid size and a first parameter of the window function is optimized using input parameters for at least one of aliasing energy and computation time.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: December 13, 2005
    Assignees: The Board of Trustees of the Leland Stanford Junior University, GE Medical Systems Global Technology Company, LLC
    Inventors: John Mark Pauly, Juan Manuel Santos, Graham Arnold Wright
  • Patent number: 6801034
    Abstract: A system and method are disclosed using incremental table motion and partial data acquisition for increased volume coverage to reconstruct MR images across a large FOV without significant slab-boundary artifacts. At each table position, full z-encoding data are acquired for a subset of the kx-ky data. The table is stepped through a number of positions over the desired FOV and MR data are acquired over the plurality of table increments. Since full z-data are acquired for each slab, the data can be Fourier transformed in z, sorted, and then aligned to match anatomic z locations. The fully sampled and aligned data is then Fourier transformed in x and y to reconstruct the final image that is free of slab-boundary artifacts.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: October 5, 2004
    Assignee: General Electric Company
    Inventors: Jean Helen Brittain, John Mark Pauly
  • Publication number: 20030215154
    Abstract: A method for reconstructing non-uniformly sampled data to create an image includes: receiving a new partial data set, the new partial data set including a vector of non-uniformly sampled data at k-space positions; subtracting an old partial data set at the same k-space positions from the new partial data set to create a difference vector; gridding the difference vector to create a difference matrix; adding the difference matrix to a frame of previously gridded data to create a new frame; and transforming the new frame to create the image. In one embodiment, gridding includes constructing a gridding table for a data point in a complete data set, and convolving a data point in the difference vector with the gridding table. In another embodiment at least one of a grid size and a first parameter of the window function is optimized using input parameters for at least one of aliasing energy and computation time.
    Type: Application
    Filed: May 17, 2002
    Publication date: November 20, 2003
    Inventors: John Mark Pauly, Juan Manuel Santos, Graham Arnold Wright
  • Publication number: 20020143247
    Abstract: A system and method are disclosed using incremental table motion and partial data acquisition for increased volume coverage to reconstruct MR images across a large FOV without significant slab-boundary artifacts. At each table position, full z-encoding data are acquired for a subset of the kx −ky data. The table is stepped through a number of positions over the desired FOV and MR data are acquired over the plurality of table increments. Since full z-data are acquired for each slab, the data can be Fourier transformed in z, sorted, and then aligned to match anatomic z locations. The fully sampled and aligned data is then Fourier transformed in x and y to reconstruct the final image that is free of slab-boundary artifacts.
    Type: Application
    Filed: March 30, 2001
    Publication date: October 3, 2002
    Inventors: Jean Helen Brittain, John Mark Pauly