Patents by Inventor John Martinie

John Martinie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12361306
    Abstract: A T-joint connector can be useful for connecting one or more flex circuit boards to quantum hardware including one or more qubits. The T-joint connector can include one or more flex circuit boards. Each of the one or more flex circuit boards can include one or more signal lines and one or more spring interconnects including a superconducting material. The one or more spring interconnects can be coupled to the one or more signal lines. The one or more spring interconnects can be configured to couple the one or more signal lines to one or more signal pads disposed on a mounting circuit board associated with the quantum hardware. The superconducting material can be superconducting at a temperature less than about 3 kelvin.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: July 15, 2025
    Assignee: GOOGLE LLC
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Patent number: 12353953
    Abstract: A laminated circuit assembly for filtering signals in one or more signal lines in, for instance, a quantum computing system is provided. In one example, the laminated circuit assembly includes one or more signal lines disposed within a substrate in a first direction. The laminated circuit assembly includes a dielectric portion of the substrate. The laminated circuit assembly includes a filter portion of the substrate extending in a first direction and containing a frequency absorbent material providing less attenuation to a first signal of a first frequency than to a second signal of a second, higher frequency. The filter portion is configured to attenuate infrared signals passing through the one or more signal lines.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: July 8, 2025
    Assignee: GOOGLE LLC
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Publication number: 20250209361
    Abstract: Systems and method for reducing effect of high energy radiation or charge noise on solid state quantum processors are disclosed. According to an aspect of the present disclosure, a quantum computing system is provided that includes: a semiconductor substrate, comprising a bulk layer and a qubit layer and a dielectric forming an interface with the semiconductor substrate. One or more qubits are formed in the qubit layer. The system further includes a shielding structure formed either between the bulk layer and the qubit layer or between the qubit layer and the interface. The shielding structure configured to shield the qubit layer from electric field generated in the bulk layer due to high-energy radiation or shield the qubit layer from charge noise generated in the interface.
    Type: Application
    Filed: March 23, 2023
    Publication date: June 26, 2025
    Applicant: Silicon Quantum Computing Pty Limited
    Inventors: Michelle Yvonne Simmons, John Martinis, Ludwik Kranz, Joris Keizer
  • Patent number: 12321822
    Abstract: A quantum computing system can include one or more classical processors. The quantum computing system can include quantum hardware including one or more qubits. The quantum computing system can include a chamber mount configured to support the quantum hardware. The quantum computing system can include a vacuum chamber configured to receive the chamber mount and dispose the quantum hardware in a vacuum. The vacuum chamber can form a cooling gradient from an end of the vacuum chamber to the quantum hardware. The quantum computing system can include a plurality of flex circuit boards including one or more signal lines. Each of the plurality of flex circuit boards can be configured to transmit signals by the one or more signal lines through the vacuum chamber to couple the one or more classical processors to the quantum hardware.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: June 3, 2025
    Assignee: GOOGLE LLC
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Publication number: 20250160220
    Abstract: The subject matter of the present disclosure may be embodied in devices, such as flexible wiring, that include: an elongated flexible substrate; multiple electrically conductive traces arranged in an array on a first side of the elongated flexible substrate; and an electromagnetic shielding layer on a second side of the elongated flexible substrate, the second side being opposite the first side, in which the elongated flexible substrate includes a fold region between a first electronically conductive trace and a second electrically conductive trace such that the electromagnetic shielding layer provides electromagnetic shielding between the first electronically conductive trace and the second electrically conductive trace.
    Type: Application
    Filed: November 25, 2024
    Publication date: May 15, 2025
    Inventor: John Martinis
  • Publication number: 20250086489
    Abstract: A qubit device includes an elongated thin film uninterrupted by Josephson junctions, a quantum device in electrical contact with a proximal end of the elongated thin film, and a ground plane that is co-planar with the elongated thin film and is in electrical contact with a distal end of the elongated thin film, in which the thin film, the quantum device, and the ground plane comprise a material that is superconducting at a designed operating temperature.
    Type: Application
    Filed: August 12, 2024
    Publication date: March 13, 2025
    Applicant: Google LLC
    Inventors: Yu Chen, John Martinis, Daniel Thomas Sank, Alireza Shabani Barzegar
  • Patent number: 12229635
    Abstract: Methods and apparatus for estimating the fidelity of quantum hardware. In one aspect, a method includes accessing a set of quantum gates; sampling a subset of quantum gates from the set of quantum gates, wherein the subset of quantum gates defines a quantum circuit; applying the quantum circuit to a quantum system and performing measurements on the quantum system to determine output information of the quantum system; calculating output information of the quantum system based on application of the quantum circuit to the quantum system; and estimating a fidelity of the quantum circuit based on the determined output information and the calculated output information of the quantum system.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: February 18, 2025
    Assignee: Google LLC
    Inventors: John Martinis, Nan Ding, Ryan Babbush, Sergei V. Isakov, Hartmut Neven, Vadim Smelyanskiy, Sergio Boixo Castrillo
  • Patent number: 12207407
    Abstract: An interconnection for flex circuit boards used, for instance, in a quantum computing system are provided. In one example, the interconnection can include a first flex circuit board having a first side and a second side opposite the first side. The interconnection can include a second flex circuit board having a third side and a fourth side opposite the third side. The first flex circuit board and the second flex circuit board are physically coupled together in an overlap joint in which a portion of the second side for the first flex circuit board overlaps a portion of the third side of the flex circuit board. The interconnection can include a signal pad structure positioned in the overlap joint that electrically couples a first via in the first flex circuit board and a second via in the second flex circuit board.
    Type: Grant
    Filed: July 19, 2023
    Date of Patent: January 21, 2025
    Assignee: GOOGLE LLC
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Patent number: 12193339
    Abstract: An integrated qubit readout circuit is presented, which includes a superconducting parametric amplifier, a circuit board arranged to mount the superconducting parametric amplifier, a circulator mounted on the circuit board and connected to the superconducting parametric amplifier, wherein the circulator comprises a termination port electrically connected to a termination resistor arranged to terminate a pump tone received by the superconducting parametric amplifier, and wherein the termination resistor is mounted on the circuit board.
    Type: Grant
    Filed: August 8, 2022
    Date of Patent: January 7, 2025
    Assignee: Google LLC
    Inventors: Theodore Charles White, John Martinis
  • Patent number: 12156481
    Abstract: The subject matter of the present disclosure may be embodied in devices, such as flexible wiring, that include: an elongated flexible substrate; multiple electrically conductive traces arranged in an array on a first side of the elongated flexible substrate; and an electromagnetic shielding layer on a second side of the elongated flexible substrate, the second side being opposite the first side, in which the elongated flexible substrate includes a fold region between a first electronically conductive trace and a second electrically conductive trace such that the electromagnetic shielding layer provides electromagnetic shielding between the first electronically conductive trace and the second electrically conductive trace.
    Type: Grant
    Filed: December 12, 2022
    Date of Patent: November 26, 2024
    Assignee: Google LLC
    Inventor: John Martinis
  • Publication number: 20240378473
    Abstract: Methods and systems for performing a surface code error detection cycle. In one aspect, a method includes initializing and applying Hadamard gates to multiple measurement qubits; performing entangling operations on a first set of paired qubits, wherein each pair comprises a measurement qubit coupled to a neighboring data qubit in a first direction; performing entangling operations on a second set of paired qubits, wherein each pair comprises a measurement qubit coupled to a neighboring data qubit in a second or third direction, the second and third direction being perpendicular to the first direction, the second direction being opposite to the third direction; performing entangling operations on a third set of paired qubits, wherein each pair comprises a measurement qubit coupled to a neighboring data qubit in a fourth direction, the fourth direction being opposite to the first direction; applying Hadamard gates to the measurement qubits; and measuring the measurement qubits.
    Type: Application
    Filed: July 23, 2024
    Publication date: November 14, 2024
    Inventors: John Martinis, Rami Barends, Austin Greig Fowler
  • Publication number: 20240346359
    Abstract: Methods, systems, and apparatus for operating a system of qubits. In one aspect, a method includes operating a first qubit from a first plurality of qubits at a first qubit frequency from a first qubit frequency region, and operating a second qubit from the first plurality of qubits at a second qubit frequency from a second first qubit frequency region, the second qubit frequency and the second first qubit frequency region being different to the first qubit frequency and the first qubit frequency region, respectively, wherein the second qubit is diagonal to the first qubit in a two-dimensional grid of qubits.
    Type: Application
    Filed: June 25, 2024
    Publication date: October 17, 2024
    Inventors: John Martinis, Austin Greig Fowler, Rami Barends
  • Patent number: 12086684
    Abstract: A qubit device includes an elongated thin film uninterrupted by Josephson junctions, a quantum device in electrical contact with a proximal end of the elongated thin film, and a ground plane that is co-planar with the elongated thin film and is in electrical contact with a distal end of the elongated thin film, in which the thin film, the quantum device, and the ground plane comprise a material that is superconducting at a designed operating temperature.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: September 10, 2024
    Assignee: Google LLC
    Inventors: Yu Chen, John Martinis, Daniel Thomas Sank, Alireza Shabani Barzegar
  • Patent number: 12082335
    Abstract: A flex circuit board can be used in transmitting signals in a quantum computing system. The flex circuit board can include at least one dielectric layer and at least one superconducting layer disposed on a surface of the at least one dielectric layer. The at least one superconducting layer can include a superconducting material. The superconducting material can be superconducting at a temperature less than about 3 kelvin. The flex circuit board can have at least one metal structure electroplated onto the at least one superconducting layer.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: September 3, 2024
    Assignee: GOOGLE LLC
    Inventors: John Martinis, Xiaojun Trent Huang, Bob Benjamin Buckley
  • Patent number: 12056576
    Abstract: Methods, systems, and apparatus for operating a system of qubits. In one aspect, a method includes operating a first qubit from a first plurality of qubits at a first qubit frequency from a first qubit frequency region, and operating a second qubit from the first plurality of qubits at a second qubit frequency from a second first qubit frequency region, the second qubit frequency and the second first qubit frequency region being different to the first qubit frequency and the first qubit frequency region, respectively, wherein the second qubit is diagonal to the first qubit in a two-dimensional grid of qubits.
    Type: Grant
    Filed: May 25, 2023
    Date of Patent: August 6, 2024
    Assignee: Google LLC
    Inventors: John Martinis, Rami Barends, Austin Greig Fowler
  • Patent number: 12056575
    Abstract: Methods and systems for performing a surface code error detection cycle. In one aspect, a method includes initializing and applying Hadamard gates to multiple measurement qubits; performing entangling operations on a first set of paired qubits, wherein each pair comprises a measurement qubit coupled to a neighboring data qubit in a first direction; performing entangling operations on a second set of paired qubits, wherein each pair comprises a measurement qubit coupled to a neighboring data qubit in a second or third direction, the second and third direction being perpendicular to the first direction, the second direction being opposite to the third direction; performing entangling operations on a third set of paired qubits, wherein each pair comprises a measurement qubit coupled to a neighboring data qubit in a fourth direction, the fourth direction being opposite to the first direction; applying Hadamard gates to the measurement qubits; and measuring the measurement qubits.
    Type: Grant
    Filed: August 28, 2023
    Date of Patent: August 6, 2024
    Assignee: Google LLC
    Inventors: John Martinis, Rami Barends, Austin Greig Fowler
  • Publication number: 20240086747
    Abstract: Methods, systems, and apparatus for operating a system of qubits. In one aspect, a method includes operating a first qubit from a first plurality of qubits at a first qubit frequency from a first qubit frequency region, and operating a second qubit from the first plurality of qubits at a second qubit frequency from a second first qubit frequency region, the second qubit frequency and the second first qubit frequency region being different to the first qubit frequency and the first qubit frequency region, respectively, wherein the second qubit is diagonal to the first qubit in a two-dimensional grid of qubits.
    Type: Application
    Filed: May 25, 2023
    Publication date: March 14, 2024
    Inventors: John Martinis, Rami Barends, Austin Greig Fowler
  • Patent number: 11923628
    Abstract: Interconnections for connecting flex circuit boards in classical and/or quantum computing systems can include a first flex circuit board having a removed portion that exposes one or more signal lines and a second flex circuit board having a removed portion that exposes one or more other signal lines. The flex circuit boards can be aligned at the removed portions to form a signal trace gap near the exposed signal lines. Exposed signal lines of the first flex circuit board can be coupled with exposed signal lines of the second flex circuit board. A ground support layer can be coupled to the first flex circuit board and the second flex circuit board along the same side. An isolation plate at least partially covering the signal trace gap can be coupled to the first flex circuit board and/or the second flex circuit board on a side opposite of the ground support layer.
    Type: Grant
    Filed: September 16, 2021
    Date of Patent: March 5, 2024
    Assignee: GOOGLE LLC
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang
  • Publication number: 20240062086
    Abstract: Methods and systems for performing a surface code error detection cycle. In one aspect, a method includes initializing and applying Hadamard gates to multiple measurement qubits; performing entangling operations on a first set of paired qubits, wherein each pair comprises a measurement qubit coupled to a neighboring data qubit in a first direction; performing entangling operations on a second set of paired qubits, wherein each pair comprises a measurement qubit coupled to a neighboring data qubit in a second or third direction, the second and third direction being perpendicular to the first direction, the second direction being opposite to the third direction; performing entangling operations on a third set of paired qubits, wherein each pair comprises a measurement qubit coupled to a neighboring data qubit in a fourth direction, the fourth direction being opposite to the first direction; applying Hadamard gates to the measurement qubits; and measuring the measurement qubits.
    Type: Application
    Filed: August 28, 2023
    Publication date: February 22, 2024
    Inventors: John Martinis, Rami Barends, Austin Greig Fowler
  • Publication number: 20240049392
    Abstract: An interconnection for flex circuit boards used, for instance, in a quantum computing system are provided. In one example, the interconnection can include a first flex circuit board having a first side and a second side opposite the first side. The interconnection can include a second flex circuit board having a third side and a fourth side opposite the third side. The first flex circuit board and the second flex circuit board are physically coupled together in an overlap joint in which a portion of the second side for the first flex circuit board overlaps a portion of the third side of the flex circuit board. The interconnection can include a signal pad structure positioned in the overlap joint that electrically couples a first via in the first flex circuit board and a second via in the second flex circuit board.
    Type: Application
    Filed: July 19, 2023
    Publication date: February 8, 2024
    Inventors: John Martinis, Bob Benjamin Buckley, Xiaojun Trent Huang