Patents by Inventor John McCann

John McCann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170046669
    Abstract: The disclosed embodiments include computer-implemented systems and processes that perform operations consistent with services provisioned to a device based on real-time sensor data indicative of and characterizing a user's operation of the device and additionally or alternatively, a system or apparatus that includes the device. For example, the device may obtain stored data identifying a provisioned service, and may obtain sensor data captured by an on-board or external sensor during an operation of the device. Based on the sensor data, the device may generate a usage parameter that characterizes the operation of the device during a temporal period, and perform an operation consistent with the provisioned service in accordance with the generated usage parameter.
    Type: Application
    Filed: September 30, 2016
    Publication date: February 16, 2017
    Inventors: Arthur Carroll Chow, Paul Mon-Wah CHAN, Perry Aaron Jones HALDENBY, Rakesh Thomas JETHWA, Eddie Cheuk Long LAW, John Jong Suk LEE, Stephen John MCCANN, Haituyen Anthony NGUYEN
  • Publication number: 20160315578
    Abstract: Novel materials, material deposition methods, and devices used to generate electrical power from thermal radiators based on thermophotovoltatic (TPV) operating principles using group IV-VI alloys and materials are disclosed. A semiconductor structure comprising (N) stacked junctions, each junction formed of a IV-VI semiconductor alloy and each of said N junctions having a bandgap, where N is an integer and N>1 is disclosed. The semiconductor structure is configured to capture electromagnetic radiation having wavelengths from about 1 ?m to about 7 ?m. TPV devices comprising the novel semiconductor structure and methods of making the novel structures and devices are also disclosed.
    Type: Application
    Filed: December 2, 2014
    Publication date: October 27, 2016
    Applicant: The Board of Regents of the University of Oklahoma
    Inventor: Patrick John McCann
  • Patent number: 9059363
    Abstract: A thermoelectric material having a high ZT value is provided. In general, the thermoelectric material is a thin film thermoelectric material that includes a heterostructure formed of IV-VI semiconductor materials, where the heterostructure includes at least one potential barrier layer. In one embodiment, the heterostructure is formed of IV-VI semiconductor materials and includes a first matrix material layer, a potential barrier material layer adjacent to the first matrix material layer and formed of a wide bandgap material, and a second matrix material layer that is adjacent the potential barrier material layer opposite the first matrix material layer. A thickness of the potential barrier layer is approximately equal to a mean free path distance for charge carriers at a desired temperature.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: June 16, 2015
    Assignee: The Board of Regents of the University of Oklahoma
    Inventor: Patrick John McCann
  • Patent number: 8901612
    Abstract: Embodiments of a thin-film heterostructure thermoelectric material and methods of fabrication thereof are disclosed. In general, the thermoelectric material is formed in a Group IIa and IV-VI materials system. The thermoelectric material includes an epitaxial heterostructure and exhibits high heat pumping and figure-of-merit performance in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity over broad temperature ranges through appropriate engineering and judicious optimization of the epitaxial heterostructure.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: December 2, 2014
    Assignees: Phononic Devices, Inc., The Board of Regents of the University of Oklahoma
    Inventors: Allen L. Gray, Robert Joseph Therrien, Patrick John McCann
  • Patent number: 8861172
    Abstract: A plurality of detonator assemblies in signal communication with a blasting machine, each detonator assembly consisting of a detonator, a storage compartment for storing programmed delay time and/or oscillation count and a countdown oscillator. A transmitter for transmitting a blast rehearsal stop start and stop signal, said signals being separated by said programmed delay time individually selected for each detonator signal. The oscillator counting the total oscillation count corresponding to said delay time. When a detonator assembly receives a FIRE command, the individual countdown oscillators countdowns the total oscillation count associated with its detonator assembly.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: October 14, 2014
    Assignee: Orica Explosives Technology Pty Ltd.
    Inventors: Dirk Hummel, Michael John McCann
  • Patent number: 8567574
    Abstract: A brake caliper has a brake pad having a backplate with a friction material attached to one side and a loading face on an opposite side. The caliper further includes a piston that applies a force to the loading face. The brake pad is releasably attached to the piston, thereby eliminating a separate brake pad retaining structure in the caliper.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: October 29, 2013
    Assignee: ArvinMeritor Light Vehicle Systems (UK) Ltd.
    Inventors: Paul Roberts, Paul Anthony Thomas, Anthony John Williams, Denis John McCann, Carl Edward Heinlein
  • Patent number: 8563844
    Abstract: Embodiments of a thin-film heterostructure thermoelectric material and methods of fabrication thereof are disclosed. In general, the thermoelectric material is formed in a Group IIa and IV-VI materials system. The thermoelectric material includes an epitaxial heterostructure and exhibits high heat pumping and figure-of-merit performance in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity over broad temperature ranges through appropriate engineering and judicious optimization of the epitaxial heterostructure.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: October 22, 2013
    Assignees: Phononic Devices, Inc., Board of Regents of the University of Oklahoma
    Inventors: Allen L. Gray, Robert Joseph Therrien, Patrick John McCann
  • Patent number: 8519380
    Abstract: Embodiments of a material having low cross-plane thermal conductivity are provided. Preferably, the material is a thermoelectric material. In general, the thermoelectric material is designed to block phonons, which reduces or eliminates heat transport due to lattice vibrations and thus cross-plane thermal conductivity. By reducing the thermal conductivity of the thermoelectric material, a figure-of-merit (ZT) of the thermoelectric material is improved. In one embodiment, the thermoelectric material includes multiple superlattice periods that block, or reflect, multiple phonon wavelengths.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: August 27, 2013
    Assignee: The Board of Regents of the University of Oklahoma
    Inventor: Patrick John McCann
  • Patent number: 8385042
    Abstract: Disclosed herein are methods for selective control of groups of wireless initiation devices such as wireless electronic boosters at a blast site. Such methods may be applied to a wide variety of blasting techniques that would benefit from the use of wireless control and initiation of explosive charges at the blast site.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: February 26, 2013
    Assignee: Orica Explosives Technology Pty Ltd.
    Inventors: Michael John McCann, Ronald F. Stewart
  • Publication number: 20130009132
    Abstract: Embodiments of a material having low cross-plane thermal conductivity are provided. Preferably, the material is a thermoelectric material. In general, the thermoelectric material is designed to block phonons, which reduces or eliminates heat transport due to lattice vibrations and thus cross-plane thermal conductivity. By reducing the thermal conductivity of the thermoelectric material, a figure-of-merit (ZT) of the thermoelectric material is improved. In one embodiment, the thermoelectric material includes multiple superlattice periods that block, or reflect, multiple phonon wavelengths.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 10, 2013
    Applicant: THE BOARD OF REGENTS OF THE UNIVERSITY OF OKLAHOMA
    Inventor: Patrick John McCann
  • Publication number: 20120216848
    Abstract: Embodiments of a thin-film heterostructure thermoelectric material and methods of fabrication thereof are disclosed. In general, the thermoelectric material is formed in a Group IIa and IV-VI materials system. The thermoelectric material includes an epitaxial heterostructure and exhibits high heat pumping and figure-of-merit performance in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity over broad temperature ranges through appropriate engineering and judicious optimization of the epitaxial heterostructure.
    Type: Application
    Filed: March 9, 2012
    Publication date: August 30, 2012
    Applicants: BOARD OF REGENTS OF THE UNIVERSITY OF OKLAHOMA, PHONONIC DEVICES, INC.
    Inventors: Allen L. Gray, Robert Joseph Therrien, Patrick John McCann
  • Publication number: 20120217548
    Abstract: Embodiments of a thin-film heterostructure thermoelectric material and methods of fabrication thereof are disclosed. In general, the thermoelectric material is formed in a Group IIa and IV-VI materials system. The thermoelectric material includes an epitaxial heterostructure and exhibits high heat pumping and figure-of-merit performance in terms of Seebeck coefficient, electrical conductivity, and thermal conductivity over broad temperature ranges through appropriate engineering and judicious optimization of the epitaxial heterostructure.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 30, 2012
    Applicants: BOARD OF REGENTS OF THE UNIVERSITY OF OKLAHOMA, PHONONIC DEVICES, INC.
    Inventors: Allen L. Gray, Robert Joseph Therrien, Patrick John McCann
  • Patent number: 8216871
    Abstract: Methods of fabrication of a thermoelectric module from thin film thermoelectric material are disclosed. In general, a thin film thermoelectric module is fabricated by first forming an N-type thin film thermoelectric material layer and one or more metallization layers on a substrate. The one or more metallization layers and the N-type thin film thermoelectric material layer are etched to form a number of N-type thermoelectric material legs. A first electrode assembly is then bonded to a first portion of the N-type thermoelectric material legs, and the first electrode assembly including the first portion of the N-type thermoelectric material legs is removed from the substrate. In a similar manner, a second electrode assembly is bonded to a first portion of a number of P-type thermoelectric material legs. The first and second electrode assemblies are then bonded using a flip-chip bonding process to complete the fabrication of the thermoelectric module.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: July 10, 2012
    Assignee: The Board of Regents of the University of Oklahoma
    Inventor: Patrick John McCann
  • Publication number: 20120055528
    Abstract: A thermoelectric material having a high ZT value is provided. In general, the thermoelectric material is a thin film thermoelectric material that includes a heterostructure formed of IV-VI semiconductor materials, where the heterostructure includes at least one potential barrier layer. In one embodiment, the heterostructure is formed of IV-VI semiconductor materials and includes a first matrix material layer, a potential barrier material layer adjacent to the first matrix material layer and formed of a wide bandgap material, and a second matrix material layer that is adjacent the potential barrier material layer opposite the first matrix material layer. A thickness of the potential barrier layer is approximately equal to a mean free path distance for charge carriers at a desired temperature.
    Type: Application
    Filed: March 29, 2010
    Publication date: March 8, 2012
    Applicant: THE BOARD OF REGENTS OF THE UNIVERSITY OF OKLAHOMA
    Inventor: Patrick John McCann
  • Publication number: 20120042800
    Abstract: Disclosed herein are methods for selective control of groups of wireless initiation devices such as wireless electronic boosters at a blast site. Such methods may be applied to a wide variety of blasting techniques that would benefit from the use of wireless control and initiation of explosive charges at the blast site.
    Type: Application
    Filed: January 11, 2010
    Publication date: February 23, 2012
    Applicant: Orica Explosives Technology Pty Ltd.
    Inventors: Michael John McCann, Ronald F. Stewart
  • Publication number: 20110265677
    Abstract: A plurality of detonator assemblies in signal communication with a blasting machine, each detonator assembly consisting of a detonator, a storage compartment for storing programmed delay time and/or oscillation count and a countdown oscillator. A transmitter for transmitting a blast rehearsal stop start and stop signal, said signals being separated by said programmed delay time individually selected for each detonator signal. The oscillator counting the total oscillation count corresponding to said delay time. When a detonator assembly receives a FIRE command, the individual countdown oscillators countdowns the total oscillation count associated with its detonator assembly.
    Type: Application
    Filed: May 29, 2009
    Publication date: November 3, 2011
    Applicant: Orica Explosives Technology PTY LTD
    Inventors: Dirk Hummel, Michael John Mccann
  • Publication number: 20110241153
    Abstract: Methods of fabrication of a thermoelectric module from thin film thermoelectric material are disclosed. In general, a thin film thermoelectric module is fabricated by first forming an N-type thin film thermoelectric material layer and one or more metallization layers on a substrate. The one or more metallization layers and the N-type thin film thermoelectric material layer are etched to form a number of N-type thermoelectric material legs. A first electrode assembly is then bonded to a first portion of the N-type thermoelectric material legs, and the first electrode assembly including the first portion of the N-type thermoelectric material legs is removed from the substrate. In a similar manner, a second electrode assembly is bonded to a first portion of a number of P-type thermoelectric material legs. The first and second electrode assemblies are then bonded using a flip-chip bonding process to complete the fabrication of the thermoelectric module.
    Type: Application
    Filed: October 5, 2010
    Publication date: October 6, 2011
    Applicant: BOARD OF REGENTS OF THE UNIVERSITY OF OKLAHOMA
    Inventor: Patrick John McCann
  • Patent number: 7929270
    Abstract: Wireless detonator assemblies (51-59) in use, form a cross-communicating network of wireless “detonator assemblies, such that communication of each wireless detonator assembly (57-59) with an associated blasting machine (50) can occur either directly, or via relay of signals (61-69) between other wireless detonator assemblies (51-56) in the network. Wireless detonator assemblies (51-59) can disseminate information (such as status information, identity information, firing codes, delay times and environmental conditions) among all of the wireless detonator assemblies in the network, while compensating for signal transmission relay delays at nodes in the network, thereby enabling the wireless detonator assemblies to detonate the explosive charges in accordance with the delay times. Various wireless detonator assemblies and corresponding blasting apparatus are disclosed and claimed. Methods of blasting using the wireless detonator assemblies and blasting apparatus are also disclosed and claimed.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: April 19, 2011
    Assignee: Orica Explosives Technology Pty Ltd
    Inventors: Dirk Hummel, Michael John McCann
  • Patent number: 7791858
    Abstract: An electronic blasting system (10) comprising a plurality of hardware components (12.1 to 12.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: September 7, 2010
    Assignee: Orica Explosives Technology Pty, Ltd.
    Inventors: Dirk Hummel, Michael John McCann, Charles Michael Lownds, Erich Nicol Meyer
  • Patent number: 7738372
    Abstract: A system and method for capacity analysis in communication networks, particularly for on the move ad hoc wireless packet-switched networks, as well as wide variety of other multimedia networks is disclosed. The invention seeks to use the same two attributes per link (link capacity and link utilization) as known circuit-switched based analysis tools while incorporating useful aspects of various statistical analyses, such as a Queuing Theory based analysis, among others. In one embodiment, the invention introduces four tests to be implemented per each link, with results of these four tests being used to color code link congestion states to generate the reports for a planner. These four tests may generate an improved analysis of the network utilizing the same number of variables used in simple conventional circuit switched based analysis.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: June 15, 2010
    Assignee: General Dynamics C4 Systems, Inc.
    Inventors: George F. Elmasry, C. John McCann