Patents by Inventor John McCorkle

John McCorkle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060078038
    Abstract: A system, method, and computer program product for removing “narrowband” interference from a broader spectrum containing a UWB signal, in a receiver of the UWB signal. The RFI is extracted from a broader spectrum to remove interference from the UWB signal, by employing an impulse response in a radio front-end of the UWB receiver that is matched with an incoming wavelet employed as part of a UWB signal to be received, matching the impulse response to the wavelet and its time-shifted and inverted versions, passing the wavelet unscathed through the receiver, and excising narrowband signals (continuous tones). Exemplary embodiments for the RFI extraction mechanism include a transmission line circuit, an active transmission line circuit, and an adaptable, controllable phase delay circuit.
    Type: Application
    Filed: August 31, 2005
    Publication date: April 13, 2006
    Inventor: John McCorkle
  • Publication number: 20060029138
    Abstract: A receiver correlator structure for an ultra wide bandwidth communication system includes an antenna, a mixer, a bandpass filter, and a convertor. The receiver receives, via the antenna, an ultra wide bandwidth signal comprising a sequence of wavelets of particular shapes and positions, and transmits the received ultra wide bandwidth signal to the mixer. The mixer also receives and mixes with the received ultra wide bandwidth signal a local ultra wide bandwidth signal comprising a sequence of wavelets of particular shapes and positions correlated to the received ultra wide bandwidth signal. The bandpass filter removes the DC components from the mixed signal, and provides the resultant signal to the convertor. The receiver structure eliminates the local ultra wide bandwidth signal AC bias and DC bias terms and 1/f noise, yet detects long sequences of logical 1's and 0's, and allows operation with reduced bandwidth convertors.
    Type: Application
    Filed: June 24, 2005
    Publication date: February 9, 2006
    Inventor: John McCorkle
  • Publication number: 20060023771
    Abstract: A method apparatus are provided for mitigating spectral lines in a wireless signal. First a code word is generated that is made up of a plurality of binary or ternary encoded pulses. Then a plurality of code-word-modulated wavelets are generated in response to the code word. These wavelets can be Gaussian monopulses, repeated cycles of a sine wave, or other shaped impulse signals. The plurality of code-word-modulated wavelets are then modulated with a bit of transmit data to form a plurality of data-modulated wavelets. This modulation serves to whiten the signals since the transmit data is effectively random. Finally, the plurality of data-modulated wavelets are transmitted to a remote device.
    Type: Application
    Filed: July 30, 2004
    Publication date: February 2, 2006
    Inventors: Terence Johnson, John McCorkle, Phuong Huynh
  • Publication number: 20060022370
    Abstract: Carpet yarn is provided which is significantly less sensitive to changing ambient environmental conditions. As such, the carpet yarns exhibit substantially uniform wet bulk properties across a wide range of ambient temperature and/or atmospheric moisture conditions so as to reduce significantly (if not eliminate entirely) visible streaks in carpets formed of such yarns. In especially preferred embodiments, the carpet yarns when made are subjected to a substantially higher draw ratio and a substantially higher precrimp temperature prior to being brought into contact with water supplied by means of a non-peristaltic, continuous pressure, steady stream pump. The resulting yarn moisture content is increased to a greater level as compared to conventional carpet yarns not possessing the environmental desensitivity exhibited by the yarns of the present invention.
    Type: Application
    Filed: May 3, 2005
    Publication date: February 2, 2006
    Applicant: HONEYWELL INTERNATIONAL, INC
    Inventors: Donald Wright, John McCorkle, Michael Brennan, Ruth Hartzler, Gerry Hagen, Harry Hu, Robert Cord
  • Publication number: 20050265428
    Abstract: An ultra wide bandwidth communications system, method and computer program product including an ultra wide bandwidth timing generator. The timing generator includes a high frequency clock generation circuit having low phase noise; a low frequency control generation circuit; and a modulation circuit coupled between the high frequency clock generation circuit and the low frequency control generation circuit. The high frequency clock generation circuit generates a plurality of high frequency clock signals. The low frequency control generation circuit generates a plurality of low frequency control signals. The modulation circuit modulates the high frequency clock signals with the low frequency control signals to produce an agile timing signal at a predetermined frequency and phase.
    Type: Application
    Filed: July 19, 2005
    Publication date: December 1, 2005
    Inventor: John McCorkle
  • Publication number: 20050265503
    Abstract: A method, device and computer readable medium for enabling and blocking communications with a remote device based on a distance of the remote device. The method on which the device and computer readable medium are based includes transmitting a message from a local device to a remote device via an ultra wide band (UWB) wireless medium and receiving a response from the remote device via the UWB wireless medium. The transmitting and receiving steps are preferably performed in accordance with a Media Access Control (MAC) protocol. A distance between the local device and the remote device is then determined based on a time between the transmitting of the message and the receiving of the response and a function, such as communicating with the remote device, is performed in the local device based on the distance determined. The communication between the local device and the remote device may be enabled or disabled depending on the distance that the remote device is from the local device.
    Type: Application
    Filed: April 12, 2005
    Publication date: December 1, 2005
    Inventors: Martin Rofheart, John McCorkle
  • Publication number: 20050245210
    Abstract: A transceiver 400 is provided in an ultrawide bandwidth device, which includes an antenna 110, a transmitter circuit 145, and a receiver circuit 165. A transmitter amplifier 440 is provided between the antenna 110 and the transmitter circuit 145, and is configured to have an operational transmitter output impedance when the transceiver 400 is in a transmit mode and an isolation transmitter output impedance when the transceiver 400 is in a receive mode. A receiver amplifier 460 is provided between the antenna 110 and the receiver circuit 165, and is configured to have an operational receiver input impedance when the transceiver 400 is in a receive mode and an isolation receiver input impedance when the transceiver 400 is in a transmit mode. The isolation transmitter output impedance is greater than the operational receiver input impedance, and the isolation receiver input impedance is greater than the operational transmitter output impedance.
    Type: Application
    Filed: April 29, 2004
    Publication date: November 3, 2005
    Inventors: Phuong Hyunh, John McCorkle, Fernando Hidalgo
  • Publication number: 20050185669
    Abstract: A method is provided for operating a wireless local device. In this method a local device receives a beacon for a current superframe in a common signal format. The beacon includes time slot assignment information. The local device then determines a device format for the transmission of data to a remote device based on format determination information. The device format can be one of a common signal format, and one or more wireless formats. The local device then determines one or more remote device time slots in the superframe assigned for transmission of the data to the remote device based on the time slot assignment information. Finally, the local device transmits the data in the one or more remote device time slots to the remote device using the device format.
    Type: Application
    Filed: June 17, 2004
    Publication date: August 25, 2005
    Inventors: Matthew Welborn, John McCorkle
  • Patent number: 6927613
    Abstract: A mono-cycle generating circuit includes a multiplexer, a pulse generating circuit, and a buffer circuit. The multiplexer receives data of a logical 1 or a logical 0, determines whether to generate a positive mono-cycle or a negative mono-cycle, based upon the data, and outputs clock signals varying in time based upon the data. The pulse generating circuit is coupled to the multiplexer, receives the clock signals and generates a first series of pulses including an up-pulse preceding a down-pulse, or a second series of pulses including a down-pulse preceding an up-pulse, in response to the clock signals received by the multiplexer. The buffer circuit is coupled to the pulse generating circuit and includes a switch circuit and a common mode buffer. The switch circuit generates the positive mono-cycle or the negative mono-cycle, based upon whether the first series of pulses is received from the pulse generating circuit or the second series of pulses is received from the pulse generating circuit.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: August 9, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Phuong T. Huynh, Agustin Ochoa, John McCorkle
  • Publication number: 20050151572
    Abstract: A mono-cycle generating circuit includes a multiplexer, a pulse generating circuit, and a buffer circuit. The multiplexer receives data of a logical 1 or a logical 0, determines whether to generate a positive mono-cycle or a negative mono-cycle, based upon the data, and outputs clock signals varying in time based upon the data. The pulse generating circuit is coupled to the multiplexer, receives the clock signals and generates a first series of pulses including an up-pulse preceding a down-pulse, or a second series of pulses including a down-pulse preceding an up-pulse, in response to the clock signals received by the multiplexer. The buffer circuit is coupled to the pulse generating circuit and includes a switch circuit and a common mode buffer. The switch circuit generates the positive mono-cycle or the negative mono-cycle, based upon whether the first series of pulses is received from the pulse generating circuit or the second series of pulses is received from the pulse generating circuit.
    Type: Application
    Filed: February 24, 2005
    Publication date: July 14, 2005
    Inventors: Agustin Ochoa, Phuong Huynh, John McCorkle
  • Publication number: 20050129153
    Abstract: An ultra-wide band (UWB) waveform receiver with noise cancellation for use in a UWB digital communication system. The UWB receiver uses a two-stage mixing approach to cancel noise and bias in the receiver. Self-jamming is prevented by inverting a portion of the received signal in the first mixer and then coherently detecting the partially and synchronously inverted signal in the second mixer. Since the drive signals on both mixers are not matched to the desired signal, leakage of either drive signal does not jam the desired signal preventing the receiver from detecting and decoding a weak signal.
    Type: Application
    Filed: January 31, 2005
    Publication date: June 16, 2005
    Inventor: John McCorkle
  • Patent number: 6812762
    Abstract: A mono-cycle generating circuit comprises a control circuit, a multiplexer, and a driver switch circuit. The control circuit generates sets of timing pulses. The multiplexer selects one of the sets of timing pulses. The driver switch circuit outputs a mono-cycle based upon the selected set of timing pulses. The driver switch circuit comprises complementary sets of switches, each complementary set of switches including complementary amplitude pull-up/pull-down functions such that the output mono-cycle is a full rail swing mono-cycle.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: November 2, 2004
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Agustin Ochoa, Phuong T. Huynh, John McCorkle
  • Publication number: 20030090308
    Abstract: A mono-cycle generating circuit includes a multiplexer, a pulse generating circuit, and a buffer circuit. The multiplexer receives data of a logical 1 or a logical 0, determines whether to generate a positive mono-cycle or a negative mono-cycle, based upon the data, and outputs clock signals varying in time based upon the data. The pulse generating circuit is coupled to the multiplexer, receives the clock signals and generates a first series of pulses including an up-pulse preceding a down-pulse, or a second series of pulses including a down-pulse preceding an up-pulse, in response to the clock signals received by the multiplexer. The buffer circuit is coupled to the pulse generating circuit and includes a switch circuit and a common mode buffer. The switch circuit generates the positive mono-cycle or the negative mono-cycle, based upon whether the first series of pulses is received from the pulse generating circuit or the second series of pulses is received from the pulse generating circuit.
    Type: Application
    Filed: September 6, 2002
    Publication date: May 15, 2003
    Inventors: Phuong T. Huynh, Agustin Ochoa, John McCorkle
  • Publication number: 20030080799
    Abstract: A mono-cycle generating circuit comprises a control circuit, a multiplexer, and a driver switch circuit. The control circuit generates sets of timing pulses. The multiplexer selects one of the sets of timing pulses. The driver switch circuit outputs a mono-cycle based upon the selected set of timing pulses. The driver switch circuit comprises complementary sets of switches, each complementary set of switches including complementary amplitude pull-up/pull-down functions such that the output mono-cycle is a full rail swing mono-cycle.
    Type: Application
    Filed: September 6, 2002
    Publication date: May 1, 2003
    Inventors: Agustin Ochoa, Phuong T. Huynh, John McCorkle
  • Patent number: 5606331
    Abstract: An antenna for radiating UWB RF pulses is disclosed. The antenna may incl a transverse electromagnetic mode (TEM) horn antenna section connected to a pair of a resistively loaded parallel plates. Each of a pair of protrusions may be connected one of the parallel plates and a shunt network is connected to the parallel plates. Each of said parallel plates includes a plurality of plate segments having varying widths. The protrusions may have a geometric shape such as a quadrilateral, rectangle, square semi-circle or triangle. The protrusions may be made of metal such as copper or aluminum or a resistive material such as carbon. Alternatively, the protrusion may be made of plated PC board such as glass epoxy or duoroid, a carbon composite or fiber glass plated with a conductive material such as copper, tin or carbon. This invention may also be used for narrow band applications, as the shunt network can be tuned to null certain frequency ranges.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: February 25, 1997
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: John McCorkle
  • Patent number: 5471223
    Abstract: An antenna for radiating ultra wide bandwidth radio frequency pulses for in communications systems and sensors is disclosed in which a TEM horn is loaded by a resistively loaded parallel plate section and a shunt network connected to the parallel plate section in order to provide a low VSWR high efficiency antenna.
    Type: Grant
    Filed: December 1, 1993
    Date of Patent: November 28, 1995
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: John McCorkle
  • Patent number: 5469174
    Abstract: A pulse transmitter for terminating reflected waves is disclosed which utilizes a series switched charged line pulse generator with a shunt element that is switched into the circuit immediately after the pulse is launched into an output line. The shunt element terminates any reflected wave so that it does not go back into the output line. The shunt element is formed by an optically controlled PIN diode coupled in series to a resistor which allows the circuitry to turn on fast and to handle high voltage pulses. The shunt element can be connected to either the input end of the charge line for circuitry embodiments in which the series switch stays closed or the shunt element can be connected at the output side of the series switch for embodiments in which the series switch opens after the pulse is formed such as, for example, where an avalanche switch is used.
    Type: Grant
    Filed: December 1, 1993
    Date of Patent: November 21, 1995
    Inventor: John McCorkle
  • Patent number: 5019825
    Abstract: A coherently interruptible frequency hopped chirp waveform generator has a ignal generating synthesizer and a chirp generator with digitally stored chirp samples in which both are phase locked to a reference clock and responsive to a timing and control circuit. The digitally stored chirp signal sample is D/A converted and mixed with a fixed frequency signal generated by the synthesizer forming translated chirp signals. The translated chirp signals are output, being controlled by a timing and control circuit so that a plurality of coherently interruptible and frequency selectable chirp sub-pulses are formed.
    Type: Grant
    Filed: November 24, 1989
    Date of Patent: May 28, 1991
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: John McCorkle