Patents by Inventor John McWhirter

John McWhirter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180002708
    Abstract: Methods are provided herein for assembling at least two nucleic acids using a sequence specific nuclease agent (e.g., a gRNA-Cas complex) to create end sequences having complementarity and subsequently assembling the overlapping complementary sequences. The nuclease agent (e.g., a gRNA-Cas complex) can create double strand breaks in dsDNA in order to create overlapping end sequences or can create nicks on each strand to produce complementary overhanging end sequences. Assembly using the method described herein can assemble any nucleic acids having overlapping sequences or can use a joiner oligo to assemble sequences without complementary ends.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 4, 2018
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: Chris Schoenherr, John McWhirter, Corey Momont, Caitlin Montagna, Lynn Macdonald, Gregg S. Warshaw, Jose F. Rojas, Ka-Man Venus Lai, David M. Valenzuela, Andrew J. Murphy
  • Publication number: 20170367308
    Abstract: Genetically modified non-human animals are provided that express an immunoglobulin variable domain that comprises at least one histidine, wherein the at least one histidine is encoded by a substitution of a non-histidine codon in the germline of the animal with a hisidine codon, or the insertion of a histidine codon in a germline immunoglobulin nucleic acid sequence. Immunoglobulin genes comprising histidines in one or more CDRs, in an N-terminal region, and/or in a loop 4 region are also provided. Immunoglobulin variable domains comprising one or more histidines (e.g., histidine clusters) substituted for non-antigen-binding non-histidine residues. Non-human animals that are progeny of animals comprising modified heavy chain variable loci (V, D, J segments), modified light chain variable loci (V, J segments), and rearranged germline light chain genes (VJ sequences) are also provided. Non-human animals that make immunoglobulin domains that bind antigens in a pH-sensitive manner are provided.
    Type: Application
    Filed: September 13, 2017
    Publication date: December 28, 2017
    Inventors: John McWhirter, Lynn Macdonald, Joel H. Martin, Andrew J. Murphy
  • Publication number: 20170369593
    Abstract: A genetically modified mouse is provided, wherein the mouse expresses an immunoglobulin light chain repertoire characterized by a limited number of light chain variable domains. Mice are provided that present a choice of two human light chain variable gene segments such that the immunoglobulin light chains expresses by the mouse comprise one of the two human light chain variable gene segments. Methods for making bispecific antibodies having universal light chains using mice as described herein, including human light chain variable regions, are provided. Methods for making human variable regions suitable for use in multispecific binding proteins, e.g., bispecific antibodies, and host cells are provided.
    Type: Application
    Filed: September 11, 2017
    Publication date: December 28, 2017
    Inventors: John McWhirter, Lynn Macdonald, Sean Stevens, Andrew J. Murphy
  • Publication number: 20170347633
    Abstract: Provided herein are methods and compositions related to non-human animals that express exogenous Terminal Deoxynucleotidyltransferase (TdT).
    Type: Application
    Filed: June 2, 2017
    Publication date: December 7, 2017
    Inventors: Lynn Macdonald, Andrew J. Murphy, Chunguang Guo, Natasha Levenkova, Naxin Tu, John McWhirter, Vera Voronina, Faith Harris
  • Patent number: 9801362
    Abstract: Genetically modified non-human animals are provided that express an immunoglobulin variable domain that comprises at least one histidine, wherein the at least one histidine is encoded by a substitution of a non-histidine codon in the germline of the animal with a hisidine codon, or the insertion of a histidine codon in a germline immunoglobulin nucleic acid sequence. Immunoglobulin genes comprising histidines in one or more CDRs, in an N-terminal region, and or in a loop 4 region are also provided. Immunoglobulin variable domains comprising one or more histidines (e.g., histidine clusters) substituted for non-antigen-binding non-histidine residues. Non-human animals that are progeny of animals comprising modified heavy chain variable loci (V, D, J segments), modified light chain variable loci (V, J segments), and rearranged germline light chain genes (VJ sequences) are also provided. Non-human animals that make immunoglobulin domains that bind antigens in a pH-sensitive manner are provided.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 31, 2017
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: John McWhirter, Lynn Macdonald, Joel H. Martin, Andrew J. Murphy
  • Patent number: 9796788
    Abstract: A genetically modified mouse is provided, wherein the mouse expresses an immunoglobulin light chain repertoire characterized by a limited number of light chain variable domains. Mice are provided that present a choice of two human light chain variable gene segments such that the immunoglobulin light chains expresses by the mouse comprise one of the two human light chain variable gene segments. Methods for making bispecific antibodies having universal light chains using mice as described herein, including human light chain variable regions, are provided. Methods for making human variable regions suitable for use in multispecific binding proteins, e.g., bispecific antibodies, and host cells are provided.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 24, 2017
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: John McWhirter, Lynn MacDonald, Sean Stevens, Andrew J. Murphy
  • Patent number: 9795121
    Abstract: Non-human animals comprising a human or humanized C3 and/or C5 nucleic acid sequence are provided as well as methods for using the same to identify compounds capable of modulating the complement system. Non-human animals that comprise a replacement of the endogenous C5 gene and/or C3 gene with a human or humanized C5 gene and/or C3 gene, and methods for making and using the non-human animals, are described. Non-human animals comprising a human or humanized C5 gene under control of non-human C5 regulatory elements is also provided, including non-human animals that have a replacement of non-human C5-encoding sequence with human C5-encoding sequence at an endogenous non-human C5 locus. Non-human animals comprising a human or humanized C3 gene under control of non-human C3 regulatory elements is also provided, including non-human animals that have a replacement of non-human C3 protein-encoding sequence with human or humanized C3 protein-encoding sequence at an endogenous non-human C3 locus.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: October 24, 2017
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Ying Hu, Adrianna Latuszek, Jingtai Cao, Alexander Mujica, Stanley Wiegand, John McWhirter, Andrew Murphy, Lynn Macdonald
  • Publication number: 20170290703
    Abstract: An optical interface device having an opening for an optical path that can be non-circular and having engagement members having gradually varying angles of engagement. An embodiment of the interface device can be a one size fits all device, providing a configuration that fits in all typical eye openings, including narrow palpebral fissures and small eyes, while providing optical path access to features and structures of the eye. An embodiment of the interface device engages the limbus, cornea and sclera.
    Type: Application
    Filed: April 6, 2017
    Publication date: October 12, 2017
    Applicant: Lensar, Inc.
    Inventors: E. Valas Teuma, John McWhirter, Michael Brownell
  • Patent number: 9738897
    Abstract: Methods are provided herein for assembling at least two nucleic acids using a sequence specific nuclease agent (e.g., a gRNA-Cas complex) to create end sequences having complementarity and subsequently assembling the overlapping complementary sequences. The nuclease agent (e.g., a gRNA-Cas complex) can create double strand breaks in dsDNA in order to create overlapping end sequences or can create nicks on each strand to produce complementary overhanging end sequences. Assembly using the method described herein can assemble any nucleic acids having overlapping sequences or can use a joiner oligo to assemble sequences without complementary ends.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: August 22, 2017
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Chris Schoenherr, John McWhirter, Corey Momont, Caitlin Montagna, Lynn Macdonald, Gregg S. Warshaw, Jose F. Rojas, Ka-Man Venus Lai, David M. Valenzuela, Andrew J. Murphy
  • Patent number: 9730435
    Abstract: Non-human animals, cells, methods and compositions for making and using the same are provided, wherein the non-human animals and cells comprise a humanized a proliferation-inducing ligand gene. Non-human animals and cells that express a human or humanized a proliferation-inducing ligand protein from an endogenous a proliferation-inducing ligand locus are described.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: August 15, 2017
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: John McWhirter, Cagan Gurer, Lynn Macdonald, Andrew J. Murphy
  • Publication number: 20170188556
    Abstract: Non-human animals, cells, methods and compositions for making and using the same are provided, wherein the non-human animals and cells comprise a humanized B-cell activating factor gene. Non-human animals and cells that express a human or humanized B-cell activating factor protein from an endogenous B-cell activating factor locus are described.
    Type: Application
    Filed: March 15, 2017
    Publication date: July 6, 2017
    Applicant: Regeneron Pharmaceuticals, Inc.
    Inventors: John McWhirter, Cagan Gurer, Lynn Macdonald, Andrew J. Murphy
  • Publication number: 20170164590
    Abstract: The invention provides genetically modified non-human animals that express chimeric human/non-human MHC I polypeptide and/or human or humanized ?2 microglobulin polypeptide, as well as embryos, cells, and tissues comprising the same. Also provided are constructs for making said genetically modified animals and methods of making the same. Methods of using the genetically modified animals to study various aspects of human immune system are provided.
    Type: Application
    Filed: February 22, 2017
    Publication date: June 15, 2017
    Inventors: Lynn Macdonald, Andrew J. Murphy, Cagan Gurer, John McWhirter, Vera Voronina, Faith Harris, Sean Stevens
  • Publication number: 20170142944
    Abstract: The invention provides genetically modified non-human animals that express chimeric human/non-human MHC I polypeptide and/or human or humanized ?2 microglobulin polypeptide, as well as embryos, cells, and tissues comprising the same. Also provided are constructs for making said genetically modified animals and methods of making the same. Methods of using the genetically modified animals to study various aspects of human immune system are provided.
    Type: Application
    Filed: January 25, 2017
    Publication date: May 25, 2017
    Inventors: Lynn Macdonald, Andrew J. Murphy, Cagan Gurer, John McWhirter, Vera Voronina, Faith Harris, Sean Stevens, Yingzi Xue
  • Publication number: 20170135326
    Abstract: Non-human animals, e.g., mammals, e.g., mice or rats, are provided comprising an immunoglobulin heavy chain locus that comprises a rearranged human immunoglobulin heavy chain variable region nucleotide sequence. The rearranged human immunoglobulin heavy chain variable region nucleotide sequence may be operably linked to a heavy or light chain constant region nucleic acid sequence. Also described are genetically modified non-human animals comprising an immunoglobulin light chain locus comprising one or more but less than the wild type number of human immunoglobulin light chain variable region gene segments, which may be operably linked to a light chain constant region nucleic acid sequence. Also provided are methods for obtaining nucleic acid sequences that encode immunoglobulin light chain variable domains capable of binding an antigen in the absence of a heavy chain.
    Type: Application
    Filed: December 7, 2015
    Publication date: May 18, 2017
    Inventors: John McWhirter, Cagan Gurer, Karolina A. Meagher, Lynn Macdonald, Andrew J. Murphy
  • Patent number: 9648856
    Abstract: Genetically modified non-human animals are provided that express an immunoglobulin variable domain that comprises at least one histidine, wherein the at least one histidine is encoded by a substitution of a non-histidine codon in the germline of the animal with a histidine codon, or the insertion of a histidine codon in a germline immunoglobulin nucleic acid sequence. Immunoglobulin genes comprising histidines in one or more CDRs, in an N-terminal region, and/or in a loop 4 region are also provided. Immunoglobulin variable domains comprising one or more histidines (e.g., histidine clusters) substituted for non-antigen-binding non-histidine residues. Non-human animals that are progeny of animals comprising modified heavy chain variable loci (V, D, J segments), modified light chain variable loci (V, J segments), and rearranged germline light chain genes (VJ sequences) are also provided. Non-human animals that make immunoglobulin domains that bind antigens in a pH-sensitive manner are provided.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: May 16, 2017
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: John McWhirter, Lynn MacDonald, Joel H. Martin, Andrew J. Murphy
  • Patent number: 9629347
    Abstract: Non-human animals, cells, methods and compositions for making and using the same are provided, wherein the non-human animals and cells comprise a humanized B-cell activating factor gene. Non-human animals and cells that express a human or humanized B-cell activating factor protein from an endogenous B-cell activating factor locus are described.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: April 25, 2017
    Assignee: REGENERON PHARMACEUTICALS, INC.
    Inventors: John McWhirter, Cagan Gurer, Lynn Macdonald, Andrew J. Murphy
  • Patent number: 9615550
    Abstract: The invention provides genetically modified non-human animals that express chimeric human/non-human MHC I polypeptide and/or human or humanized ?2 microglobulin polypeptide, as well as embryos, cells, and tissues comprising the same. Also provided are constructs for making said genetically modified animals and methods of making the same. Methods of using the genetically modified animals to study various aspects of human immune system are provided.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: April 11, 2017
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Lynn Macdonald, Andrew J. Murphy, Cagan Gurer, John McWhirter, Vera Voronina, Faith Harris, Sean Stevens
  • Patent number: 9591835
    Abstract: The invention provides genetically modified non-human animals that express chimeric human/non-human MHC I polypeptide and/or human or humanized ?2 microglobulin polypeptide, as well as embryos, cells, and tissues comprising the same. Also provided are constructs for making said genetically modified animals and methods of making the same. Methods of using the genetically modified animals to study various aspects of human immune system are provided.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: March 14, 2017
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Lynn MacDonald, Andrew J. Murphy, Cagan Gurer, John McWhirter, Vera Voronina, Faith Harris, Sean Stevens, Yingzi Xue
  • Patent number: 9580715
    Abstract: Methods are provided herein for assembling at least two nucleic acids using a sequence specific nuclease agent (e.g., a gRNA-Cas complex) to create end sequences having complementarity and subsequently assembling the overlapping complementary sequences. The nuclease agent (e.g., a gRNA-Cas complex) can create double strand breaks in dsDNA in order to create overlapping end sequences or can create nicks on each strand to produce complementary overhanging end sequences. Assembly using the method described herein can assemble any nucleic acids having overlapping sequences or can use a joiner oligo to assemble sequences without complementary ends.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: February 28, 2017
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Chris Schoenherr, John McWhirter, Corey Momont, Caitlin Montagna, Lynn Macdonald, Gregg S. Warshaw, Jose F. Rojas, Ka-Man Venus Lai, David M. Valenzuela, Andrew J. Murphy
  • Publication number: 20160311899
    Abstract: A genetically modified non-human animal is provided, wherein the non-human animal expresses an antibody repertoire capable of pH dependent binding to antigens upon immunization. A genetically modified non-human animal is provided that expresses a single light chain variable domain derived from a single rearranged light chain variable region gene in the germline of the non-human animal, wherein the single rearranged light chain variable region gene comprises a substitution of at least one non-histidine encoding codon with a histidine encoding codon. Methods of making non-human animals that express antibodies comprising a histidine-containing universal light chain are provided.
    Type: Application
    Filed: July 14, 2016
    Publication date: October 27, 2016
    Inventors: John McWhirter, Lynn Macdonald, Andrew J. Murphy