Patents by Inventor John Michael Gohndrone

John Michael Gohndrone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10183958
    Abstract: A method for producing an organohalosilanes comprising reacting an organic compound comprising a halogen-substituted or unsubstituted alkane, a halogen-substituted or unsubstituted alkene, or an aromatic compound and at least one hydridohalosilane of formula RnSiHmX4-m-n, wherein each R is independently C-1-C-14 hydrocarbyl or C-1-C-14 halogen-substituted hydrocarbyl, X is fluoro, chloro, bromo, or iodo, n is 0, 1, or 2, m is 1, 2 or 3, and m+n=1, 2 or 3, in the presence of a heterogeneous catalyst comprising an oxide of one or more of the elements Sc, Y, Ti, Zr, Hf, B, Al, Ga, In, C, Si, Ge, Sn, or Pb, at a temperature greater than 100° C., and at a pressure of at least 690 kPa, to produce a crude reaction product comprising the organohalosilane.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: January 22, 2019
    Assignee: Dow Silicones Corporation
    Inventor: John Michael Gohndrone
  • Publication number: 20180105542
    Abstract: A method for producing an organohalosilanes comprising reacting an organic compound comprising a halogen-substituted or unsubstituted alkane, a halogen-substituted or unsubstituted alkene, or an aromatic compound and at least one hydridohalosilane of formula RnSiHmX4-m-n, wherein each R is independently C-1-C-1 4 hydrocarbyl or C-1-C-1 4 hologen-substituted hydrocarbyl, X is fluoro, chloro, bromo, or iodo, n is 0, 1, or 2, m is 1, 2 or 3, and m+n=1, 2 or 3, in the presence of a heterogeneous catalyst comprising an oxide of one or more of the elements Sc, Y, Ti, Zr, Hf, B, Al, Ga, In, C, Si, Ge, Sn, or Pb, at a temperature greater than 100° C., and at a pressure of at least 690 kPa, to produce a crude reaction product comprising the organohalosilane.
    Type: Application
    Filed: February 3, 2016
    Publication date: April 19, 2018
    Inventor: John Michael Gohndrone
  • Patent number: 9908903
    Abstract: A method for producing an organohalosilane, the method comprising: reacting an organic compound comprising a halogen-substituted or unsubstituted aromatic compound with a hydridohalosilane mixture comprising at least two different hydridohalosilanes of formula (I) RnSiHmX4-m-n, where each R is independently C1-C14 hydrocarbyl or C1-C14 hologen-substituted hydrocarbyl, X is fluoro, chloro, bromo, or iodo, n is 0, 1, or 2, m is 1, 2, or 3 and m+n is 1, 2, or 3, in the presence of a catalyst comprising one or more of the elements Sc, Y, Ti, Zr, Hf, Nb, B, Al, Ga, In, C, Si, Ge, Sn, or Pb, at a temperature greater than 100° C.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: March 6, 2018
    Assignee: Dow Corning Corporation
    Inventor: John Michael Gohndrone
  • Publication number: 20170369514
    Abstract: A method for producing an organohalosilane, the method comprising: reacting an organic compound comprising a halogen-substituted or unsubstituted aromatic compound with a hydridohalosilane mixture comprising at least two different hydridohalosilanes of formula (I) RnSiHmX4-m-n, where each R is independently C1-C14 hydrocarbyl or C1-C14 hologen-substituted hydrocarbyl, X is fluoro, chloro, bromo, or iodo, n is 0, 1, or 2, m is 1, 2, or 3 and m+n is 1, 2, or 3, in the presence of a catalyst comprising one or more of the elements Sc, Y, Ti, Zr, Hf, Nb, B, Al, Ga, In, C, Si, Ge, Sn, or Pb, at a temperature greater than 100° C.
    Type: Application
    Filed: February 3, 2016
    Publication date: December 28, 2017
    Inventor: John Michael Gohndrone
  • Patent number: 9518072
    Abstract: A method for producing a reaction product comprising an ester-functional silane, the method comprising: i) reacting a composition comprising: a) a haloorganosilane, b) a metal salt of a carboxy-functional compound, c) a phase transfer catalyst comprising a bicyclic amidine, an iminium compound, or a mixture thereof, provided that the iminium compound is not an acyclic guanidinium compound or pyridinium compound, and d) a co-catalyst, provided that the co-catalyst is optional when the phase transfer catalyst comprises the iminium compound.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: December 13, 2016
    Assignee: Dow Corning Corporation
    Inventors: Michael Wolfgang Backer, John Michael Gohndrone, Don Lee Kleyer, Xiaobing Zhou
  • Publication number: 20150126676
    Abstract: A method for producing a reaction product comprising an ester-functional silane, the method comprising: i) reacting a composition comprising: a) a haloorganosilane, b) a metal salt of a carboxy-functional compound, c) a phase transfer catalyst comprising a bicyclic amidine, an iminium compound, or a mixture thereof, provided that the iminium compound is not an acyclic guanidinium compound or pyridinium compound, and d) a co-catalyst, provided that the co-catalyst is optional when the phase transfer catalyst comprises the iminium compound.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 7, 2015
    Inventors: Michael Wolfgang Backer, John Michael Gohndrone, Don Lee Kleyer, Xiaobing Zhou
  • Patent number: 6740767
    Abstract: A process for producing organosilicon compounds of the formula (RO)3-mRmSi—Alk—Sn—Alk—SiRm(OR)3-m in which R is a monovalent hydrocarbon having 1-12 carbon atoms, Alk is a divalent hydrocarbon having 1-18 carbon atoms, m is 0, 1 or 2, and n is 2-8, preferably 3-8. The process consists generally of the steps of (I) heating and reacting (A) a sulfide compound such as M2Sn or MHS where H is hydrogen, M is ammonium or an alkali metal, and n is 1-8; with (B) a silane compound of the formula (RO)3-mRmSi—Alk—X where X is Cl, Br or I, and m is 0, 1, or 2; and with (C) sulfur. Step (I) is carried out in the presence of a phase transfer catalyst, and an aqueous phase containing a buffer or a basic compound, to form a product mixture. In step (II), the product mixture is again heated to a temperature of 80-100° C., preferably a temperature of 85-95° C., and most preferably to a temperature of 87-92° C.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: May 25, 2004
    Assignee: Dow Corning Corporation
    Inventors: Chad Aaron Buesing, John Michael Gohndrone
  • Publication number: 20040092758
    Abstract: A process for producing organosilicon compounds of the formula (RO)3-mRmSi-Alk-Sn-Alk-SiRm(OR)3-m in which R is a monovalent hydrocarbon having 1-12 carbon atoms, Alk is a divalent hydrocarbon having 1-18 carbon atoms, m is 0, 1 or 2, and n is 2-8, preferably 3-8. The process consists generally of the steps of (I) heating and reacting (A) a sulfide compound such as M2Sn or MHS where H is hydrogen, M is ammonium or an alkali metal, and n is 1-8; with (B) a silane compound of the formula (RO)3-mRmSi-Alk-X where X is Cl, Br or I, and m is 0, 1, or 2; and with (C) sulfur. Step (I) is carried out in the presence of a phase transfer catalyst, and an aqueous phase containing a buffer or a basic compound, to form a product mixture. In step (II), the product mixture is again heated to a temperature of 80-100 ° C., preferably a temperature of 85-95 ° C., and most preferably to a temperature of 87-92° C.
    Type: Application
    Filed: November 12, 2002
    Publication date: May 13, 2004
    Inventors: Chad Aaron Buesing, John Michael Gohndrone
  • Patent number: 6534668
    Abstract: A process for the production of sulfur containing organosilicon compounds of the formula: (RO)3−mRmSi—Alk—Sn—Alk—SiRm(OR)3−m where R is independently a monovalent hydrocarbon of 1 to 12 carbon atoms; Alk is a divalent hydrocarbon of 1 to 18 carbon atoms; m is an integer of 0 to 2, n is a number from 1 to 8; based on phase transfer catalysis techniques is disclosed. The process comprises reacting: (A) a sulfide compound having the formula M2Sn or MHS, where H is hydrogen, M is ammonium or an alkali metal, n is as defined above, with (B) a silane compound of the formula; (RO)3−mRmSi—Alk—X where X is Cl, Br or I, and m is the same as above, and optionally, (C) sulfur in the presence of a phase transfer catalyst and an aqueous phase containing a buffer. The improvement of the present invention is characterized by adding a buffer to the aqueous phase, which minimizes or prevents gelling of the sulfur containing organosilicon compounds.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: March 18, 2003
    Assignee: Dow Corning Corporation
    Inventors: Michael Wolfgang Backer, Howard Marvin Bank, John Michael Gohndrone, William Charles Maki, Charles Edmund Skinner, Anil Kumar Tomar, Hongjun Yue
  • Publication number: 20030013901
    Abstract: A process for the production of sulfur containing organosilicon compounds of the formula:
    Type: Application
    Filed: June 29, 2001
    Publication date: January 16, 2003
    Inventors: Michael Wolfgang Backer, Howard Marvin Bank, John Michael Gohndrone, William Charles Maki, Charles Edmund Skinner, Anil Kumar Tomar, Hongjun Yue
  • Patent number: 6448426
    Abstract: An improved process for the production of organosilicon compounds of the formula (RO)3−mRmSi—Alk—Sn—Alk—SiRm(OR)3−m where R is independently a monovalent hydrocarbon of 1 to 12 carbon atoms, Alk is a divalent hydrocarbon of 1 to 18 carbon atoms; m is an integer of 0 to 2, n is a number from 1 to 8 is disclosed.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: September 10, 2002
    Assignee: Dow Corning Corporation
    Inventors: Michael Wolfgang Backer, Howard Marvin Bank, John Michael Gohndrone, William Charles Maki, Charles Edmund Skinner, Anil Kumar Tomar, Hongjun Yue
  • Patent number: 6384255
    Abstract: A process for the production of organosilicon compounds of the formula (RO)3−mRmSi—Alk—Sn—Alk—SiRm(OR)3−m where R is independently a monovalent hydrocarbon of 1 to 12 carbon atoms, Alk is a divalent hydrocarbon of 1 to 18 carbon atoms; m is an integer of 0 to 2, n is a number from 1 to 8 is disclosed. The process comprises: (A) reacting sulfur, a phase transfer catalyst, a sulfide compound having the formula M2Sn or MHS, where H is hydrogen, M is ammonium or an alkali metal, n is the same as above,  and water to form an intermediate reaction product; (B) reacting said intermediate reaction product with  a silane compound of the formula; (RO)3−mRmSi—Alk—X  where X is Cl, Br or I, and m is the same as above. The invention provides an improvement process characterized by adding the phase transfer catalyst to the aqueous phase prior to mixing the aqueous phase with the silane compound for the reaction.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: May 7, 2002
    Assignee: Dow Corning Corporation
    Inventors: Michael Wolfgang Backer, Howard Marvin Bank, John Michael Gohndrone, William Charles Maki, Charles Edmund Skinner, Anil Kumar Tomar, Hongjun Yue
  • Patent number: 6384256
    Abstract: A process for the production of organosilicon compounds of the formula: (RO)3−mRmSi-Alk-Sn-Alk-SiRm(OR)3−m where R is independently a monovalent hydrocarbon of 1 to 12 carbon atoms; Alk is a divalent hydrocarbon of 1 to 18 carbon atoms; m is an integer of 0 to 2, n is a number from 1 to 10; is disclosed. The process comprises: (A) reacting an alkali metal hydroxide compound, a sulfide compound having the formula M2Sn or MHS, where H is hydrogen, M is ammonium or an alkali metal, n is as defined above,  and sulfur in water to form a polysulfide mixture, (B) reacting said polysulfide mixture with a silane compound of the formula; (RO)3−mRmSi-Alk-X where X is Cl, Br or I, and m is the same as above, in the presence of a phase transfer catalyst. The process provides sulfur containing organosilicon compounds based on phase transfer catalysis techniques that result in a final product composition having greater stability, purity, and appearance.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: May 7, 2002
    Assignee: Dow Corning Corporation
    Inventors: Michael Wolfgang Backer, Howard Marvin Bank, John Michael Gohndrone, William Charles Maki, Charles Edmund Skinner, Anil Kumar Tomar, Hongjun Yue