Patents by Inventor John Michael Lizzi

John Michael Lizzi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091953
    Abstract: A method for controlling a robotic system includes determining a location and/or a pose of a power system component based on data received from one or more sensors, and determining a mapping of a location of a robotic system within a model of an external environment of the robotic system based on the data. The model of the external environment provides locations of objects external to the robotic system. A sequence of movements of components of the robotic system is determined to perform maintenance on the power system component based on the locations of the objects external to the robotic system and/or the location or pose of the power system component. One or more control signals are communicated to remotely control movement of the components of the robotic system based on the sequence or movements of the components to perform maintenance on the power system component.
    Type: Application
    Filed: November 30, 2023
    Publication date: March 21, 2024
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Patent number: 11865726
    Abstract: A system includes a first robotic machine having a first set of capabilities for interacting with a target object on stationary equipment; a second robotic machine having a second set of capabilities for interacting with the target object; and a task manager that can determine capability requirements to perform a task on the target object. The task has an associated series of sub-tasks. The task manager can assign a first sequence of sub-tasks for performance by the first robotic machine based on the first set of capabilities and a second sequence of sub-tasks for performance by the second robotic machine based on the second set of capabilities. The first and second robotic machines can coordinate performance of the first sequence of sub-tasks by the first robotic machine with performance of the second sequence of sub-tasks by the second robotic machine to accomplish the task.
    Type: Grant
    Filed: October 27, 2022
    Date of Patent: January 9, 2024
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick
  • Patent number: 11865732
    Abstract: A robotic system includes a controller configured to obtain image data from one or more optical sensors and to determine one or more of a location and/or pose of a vehicle component based on the image data. The controller also is configured to determine a model of an external environment of the robotic system based on the image data and to determine tasks to be performed by components of the robotic system to perform maintenance on the vehicle component. The controller also is configured to assign the tasks to the components of the robotic system and to communicate control signals to the components of the robotic system to autonomously control the robotic system to perform the maintenance on the vehicle component.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: January 9, 2024
    Assignee: Transportation IP Holdings, LLC
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Publication number: 20230249351
    Abstract: A fastener system and method includes a controller having one or more processors that obtain image information associated with a tie plate. The tie plate includes one or more holes, and each hole is configured to receive a fastener. A fastener driving unit drives the fastener into at least one of the one or more holes. The controller controls movement of the fastener driving unit to move the fastener driving unit to a location corresponding to the at least one hole, and the controller controls movement of the fastener driving unit to drive the fastener into the at least one hole.
    Type: Application
    Filed: April 12, 2023
    Publication date: August 10, 2023
    Inventors: Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick, Mark Bachman, Michael VanderLinden, Mark Bradshaw Kraeling, Norman Wellings, Eric Kuiper, Dan Derosia, Julio Payan, James Maki, Matthew Orvedahl, Ozan Emsun, Mark David
  • Patent number: 11660756
    Abstract: A system includes a first robotic machine having a first set of capabilities for interacting with a target object on stationary equipment; a second robotic machine having a second set of capabilities for interacting with the target object; and a task manager that can determine capability requirements to perform a task on the target object. The task has an associated series of sub-tasks. The task manager can assign a first sequence of sub-tasks for performance by the first robotic machine based on the first set of capabilities and a second sequence of sub-tasks for performance by the second robotic machine based on the second set of capabilities. The first and second robotic machines can coordinate performance of the first sequence of sub-tasks by the first robotic machine with performance of the second sequence of sub-tasks by the second robotic machine to accomplish the task.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: May 30, 2023
    Assignee: Transportation IP Holdings, LLC
    Inventors: Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick
  • Publication number: 20230122689
    Abstract: A system includes a first robotic machine having a first set of capabilities for interacting with a target object on stationary equipment; a second robotic machine having a second set of capabilities for interacting with the target object; and a task manager that can determine capability requirements to perform a task on the target object. The task has an associated series of sub-tasks. The task manager can assign a first sequence of sub-tasks for performance by the first robotic machine based on the first set of capabilities and a second sequence of sub-tasks for performance by the second robotic machine based on the second set of capabilities. The first and second robotic machines can coordinate performance of the first sequence of sub-tasks by the first robotic machine with performance of the second sequence of sub-tasks by the second robotic machine to accomplish the task.
    Type: Application
    Filed: October 27, 2022
    Publication date: April 20, 2023
    Inventors: Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick
  • Publication number: 20220241975
    Abstract: A control system includes a task manager that can determine capability requirements to perform a task on the target object. The task has an associated series of sub-tasks, with the sub-tasks having one or more capability requirements. The task manager selects and assigns a first sequence of sub-tasks to a first robotic machine that has a first set of capabilities and operates according to a first mode of operation. The task manager selects and assigns a second sequence of sub-tasks to a second robotic machine that has a second set of capabilities and operates according to a second mode of operation. The task manager selects the first robotic machine based on the first set of capabilities and the first mode of operation of the first robotic machine, and selects the second robotic machine based on the second set of capabilities and the second mode of operation.
    Type: Application
    Filed: April 22, 2022
    Publication date: August 4, 2022
    Inventors: Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick, Mark Bachman, Michael VanderLinden, Mark Bradshaw Kraeling, Norman Wellings
  • Patent number: 11312018
    Abstract: A system includes a first robotic machine having a first set of capabilities for interacting with a target object; a second robotic machine having a second set of capabilities for interacting with the target object; and a task manager that can determine capability requirements to perform a task on the target object. The task has an associated series of sub-tasks. The task manager can assign a first sequence of sub-tasks for performance by the first robotic machine based on the first set of capabilities and a second sequence of sub-tasks for performance by the second robotic machine based on the second set of capabilities. The first and second robotic machines can coordinate performance of the first sequence of sub-tasks by the first robotic machine with performance of the second sequence of sub-tasks by the second robotic machine to accomplish the task.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: April 26, 2022
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: John Michael Lizzi, Huan Tan, Charles Burton Theurer, Balajee Kannan, Romano Patrick
  • Publication number: 20210252712
    Abstract: A robotic system includes a controller configured to obtain image data from one or more optical sensors and to determine one or more of a location and/or pose of a vehicle component based on the image data. The controller also is configured to determine a model of an external environment of the robotic system based on the image data and to determine tasks to be performed by components of the robotic system to perform maintenance on the vehicle component. The controller also is configured to assign the tasks to the components of the robotic system and to communicate control signals to the components of the robotic system to autonomously control the robotic system to perform the maintenance on the vehicle component.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 19, 2021
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Publication number: 20210181722
    Abstract: The present approach relates to streaming data derived from inspection data acquired using one or more robots performing inspections of an asset or assets. Such inspections may be fully or partially automated, such as being controlled by one or more computer-based routines, and may be planned or dynamically altered in response to inputs or requirements associated with an end-user of the inspection data, such as a subscriber to the data in a publication/subscription distribution scheme. Thus, an inspection may be planned or altered based on the data needs or subscription levels of the user or customers.
    Type: Application
    Filed: February 26, 2021
    Publication date: June 17, 2021
    Inventors: Huan Tan, Li Zhang, Romano Patrick, Viktor Holovashchenko, Charles Burton Theurer, John Michael Lizzi, JR., Arpit Jain, Shiraj Sen, Todd William Danko, Kori U. MacDonald
  • Patent number: 11020859
    Abstract: A robotic system includes a controller configured to obtain image data from one or more optical sensors and to determine one or more of a location and/or pose of a vehicle component based on the image data. The controller also is configured to determine a model of an external environment of the robotic system based on the image data and to determine tasks to be performed by components of the robotic system to perform maintenance on the vehicle component. The controller also is configured to assign the tasks to the components of the robotic system and to communicate control signals to the components of the robotic system to autonomously control the robotic system to perform the maintenance on the vehicle component.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: June 1, 2021
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Romano Patrick, Shiraj Sen, Arpit Jain, Huan Tan, Yonatan Gefen, Shuai Li, Shubao Liu, Pramod Sharma, Balajee Kannan, Viktor Holovashchenko, Douglas Forman, John Michael Lizzi, Charles Burton Theurer, Omar Al Assad, Ghulam Ali Baloch, Frederick Wilson Wheeler, Tai-Peng Tian
  • Patent number: 10761526
    Abstract: An asset inspection system includes a robot and a server. The server receives a request for data from the robot, wherein the requested data comprises an algorithm, locates the requested data in a database stored on the server, encrypts the requested data, and transmits the requested data to the robot. The robot is configured to collect inspection data corresponding to an asset based at least in part on the requested data and transmit the collected inspection data to the server.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: September 1, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Huan Tan, Li Zhang, Romano Patrick, Viktor Holovashchenko, Charles Burton Theurer, John Michael Lizzi, Jr.
  • Patent number: 10675765
    Abstract: Systems and methods are provided for an automation system. The systems and methods calculate a motion trajectory of a manipulator and an end-effector. The end-effector is configured to grasp a target object. The motion trajectory defines successive positions of the manipulator and the end-effector along a plurality of via-points toward the target object. The systems and methods further acquire force/torque (F/T) data from an F/T sensor associated with the end-effector, and adjusts the motion trajectory based on the F/T data.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: June 9, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Huan Tan, John Michael Lizzi, Douglas Forman, Charles Burton Theurer, Omar Al Assad, Romano Patrick, Balajee Kannan, Yonatan Gefen
  • Publication number: 20200094411
    Abstract: A system includes a first robotic machine having a first set of capabilities for interacting with a target object; a second robotic machine having a second set of capabilities for interacting with the target object; and a task manager that can determine capability requirements to perform a task on the target object. The task has an associated series of sub-tasks. The task manager can assign a first sequence of sub-tasks for performance by the first robotic machine based on the first set of capabilities and a second sequence of sub-tasks for performance by the second robotic machine based on the second set of capabilities. The first and second robotic machines can coordinate performance of the first sequence of sub-tasks by the first robotic machine with performance of the second sequence of sub-tasks by the second robotic machine to accomplish the task.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 26, 2020
    Inventors: Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick
  • Publication number: 20190263430
    Abstract: A system and method includes determining, with a sensor assembly disposed onboard a first aerial vehicle, a direction in which a fluid flows within or through the first aerial vehicle, and determining an orientation of the first aerial vehicle relative to a second aerial vehicle based at least in part on the direction in which the fluid flows within or through the first aerial vehicle.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 29, 2019
    Inventors: Eugene Smith, Ajith Kuttannair Kumar, Wolfgang Daum, Martin Paget, Daniel Rush, Sameh Fahmy, Brad Thomas Costa, Seneca Snyder, Jerry Duncan, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffret James Kisak, Dale Martin DiDomenico, Suresh Govindappa, Manibabu Pippalla, Sethu Madhavan, Jared Klineman Cooper, Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick, Brad Thomas Costa, James D. Brooks, Micahel Scott Miner, Harry Kirk Matthews, JR., Bradford Wayne Miller, Neeraja Subrahmaniyan, Brian Joseph McManus, Frank Wawrzyniak, Ralph C. Haddock, III, Robert James Foy, James Glen Corry, Steven Andrew Kellner, Joseph Mario Nazareth, Brian William Schroeck, Shawn Arthur McClintic
  • Publication number: 20190232498
    Abstract: A system includes a first robotic machine having a first set of capabilities for interacting with a target object on stationary equipment; a second robotic machine having a second set of capabilities for interacting with the target object; and a task manager that can determine capability requirements to perform a task on the target object. The task has an associated series of sub-tasks. The task manager can assign a first sequence of sub-tasks for performance by the first robotic machine based on the first set of capabilities and a second sequence of sub-tasks for performance by the second robotic machine based on the second set of capabilities. The first and second robotic machines can coordinate performance of the first sequence of sub-tasks by the first robotic machine with performance of the second sequence of sub-tasks by the second robotic machine to accomplish the task.
    Type: Application
    Filed: April 10, 2019
    Publication date: August 1, 2019
    Inventors: Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick
  • Patent number: 10361000
    Abstract: The system and method disclosed herein provides an integrated and automated workflow, sensor, and reasoning system that automatically detects breaches in protocols, appropriately alarms and records these breaches, facilitates staff adoption of protocol adherence, and ultimately enables the study of protocols for care comparative effectiveness. The system provides real-time alerts to medical personnel in the actual processes of care, thereby reducing the number of negative patient events and ultimately improving staff behavior with respect to protocol adherence.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: July 23, 2019
    Assignee: General Electric Company
    Inventors: Christopher Donald Johnson, Peter Henry Tu, Piero Patrone Bonissone, John Michael Lizzi, Jr., Kunter Seref Akbay, Ting Yu, Corey Nicholas Bufi, Viswanath Avasarala, Naresh Sundaram Iyer, Yi Yao, Kedar Anil Patwardhan, Dashan Gao
  • Publication number: 20190193275
    Abstract: Systems and methods are provided for an automation system. The systems and methods calculate a motion trajectory of a manipulator and an end-effector. The end-effector is configured to grasp a target object. The motion trajectory defines successive positions of the manipulator and the end-effector along a plurality of via-points toward the target object. The systems and methods further acquire force/torque (F/T) data from an F/T sensor associated with the end-effector, and adjusts the motion trajectory based on the F/T data.
    Type: Application
    Filed: March 4, 2019
    Publication date: June 27, 2019
    Inventors: Huan Tan, John Michael Lizzi, Douglas Forman, Charles Burton Theurer, Omar Al Assad, Romano Patrick, Balajee Kannan, Yonatan Gefen
  • Patent number: 10300601
    Abstract: A locomotive control system may include first and second robotic machines and a task manager. The first and second robotic machines have respective first and second sets of capabilities for interacting with a surrounding environment. The task manager selects the first and second robotic machines from a group to perform a task based on the first and second sets of capabilities of the robotic machines. The task involves manipulating and/or inspecting a target object of a vehicle. The task manager assigns a first sequence of sub-tasks to be performed by the first robotic machine and a second sequence of sub-tasks to be performed by the second robotic machine. The first and second robotic machines are configured to coordinate performance of the first sequence of sub-tasks by the first robotic machine with performance of the second sequence of sub-tasks by the second robotic machine to accomplish the task.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: May 28, 2019
    Assignee: GE GLOBAL SOURCING LLC
    Inventors: Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick
  • Publication number: 20190146462
    Abstract: The present approach relates to streaming data derived from inspection data acquired using one or more robots performing inspections of an asset or assets. Such inspections may be fully or partially automated, such as being controlled by one or more computer-based routines, and may be planned or dynamically altered in response to inputs or requirements associated with an end-user of the inspection data, such as a subscriber to the data in a publication/subscription distribution scheme. Thus, an inspection may be planned or altered based on the data needs or subscription levels of the user or customers.
    Type: Application
    Filed: November 10, 2017
    Publication date: May 16, 2019
    Inventors: Huan Tan, Li Zhang, Romano Patrick, Viktor Holovashchenko, Charles Burton Theurer, John Michael Lizzi, JR., Arpit Jain, Shiraj Sen, Todd William Danko, Kori U. MacDonald