Patents by Inventor John Michael Ramsey

John Michael Ramsey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170301527
    Abstract: Methods, systems and devices that provide fluid devices with at least one SPE bed adjacent (upstream of) a separation channel which may be in communication with an inlet of a Mass Spectrometer. The fluid device can be configured to operate using independently applied pressures to a BGE reservoir and a sample reservoir for pressure-driven injection that can inject a discrete sample plug into a separation channel that does not require voltage applied to the sample reservoir and can allow for in-channel focusing methods to be used. The methods, systems and devices are particularly suitable for use with a mass spectrometer but optical or other electronic detectors may also be used with the fluidic devices.
    Type: Application
    Filed: June 29, 2017
    Publication date: October 19, 2017
    Inventors: John Scott Mellors, William A. Black, John Michael Ramsey
  • Publication number: 20170271139
    Abstract: Mass spectrometry systems include an ionizer, mass analyzer and the detector, with a high pressure chamber holding the mass analyzer and a separate chamber holding the detector to allow for differential background pressures where P2<P1 which generates gas flow through an unsealed, sealed or partially sealed ion trap and enhances detected signal relative to when P2=P1.
    Type: Application
    Filed: June 8, 2017
    Publication date: September 21, 2017
    Inventors: John Michael Ramsey, Kevin Philip Schultze, Bruno Jean-Bernard Coupier
  • Publication number: 20170233797
    Abstract: A microfluidic device includes a plurality of reaction wells; and a plurality of solid supports, and each of the solid supports has a reagent attached thereto. The reagent is attached to the solid support via a labile reagent/support bond such that the reagent is configured to be cleaved from the support via a cleaving operation.
    Type: Application
    Filed: February 28, 2017
    Publication date: August 17, 2017
    Inventors: John Michael Ramsey, William Henley, Emily Oblath
  • Patent number: 9728387
    Abstract: Methods, systems and devices that provide fluid devices with at least one SPE bed adjacent (upstream of) a separation channel which may be in communication with an inlet of a Mass Spectrometer. The fluid device can be configured to operate using independently applied pressures to a BGE reservoir and a sample reservoir for pressure-driven injection that can inject a discrete sample plug into a separation channel that does not require voltage applied to the sample reservoir and can allow for in-channel focusing methods to be used. The methods, systems and devices are particularly suitable for use with a mass spectrometer but optical or other electronic detectors may also be used with the fluidic devices.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: August 8, 2017
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: John Scott Mellors, William A. Black, John Michael Ramsey
  • Patent number: 9711341
    Abstract: Mass spectrometry systems include an ionizer, mass analyzer and the detector, with a high pressure chamber holding the mass analyzer and a separate chamber holding the detector to allow for differential background pressures where P2<P1 which generates gas flow through an unsealed, sealed or partially sealed ion trap and enhances detected signal relative to when P2=P1.
    Type: Grant
    Filed: June 9, 2015
    Date of Patent: July 18, 2017
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: John Michael Ramsey, Kevin Philip Schultze, Bruno Jean-Bernard Coupier
  • Publication number: 20170175181
    Abstract: Devices and methods generate an ordered restriction map of genomic DNA extracted from whole cells. The devices have a fluidic microchannel that merges into a reaction nanochannel that merges into a detection nanochannel at an interface where the nanochannel diameter decreases in size by between 50% to 99%. Intact molecules of DNA are transported to the reaction nanochannel and then fragmented in the reaction nanochannel using restriction endonuclease enzymes. The reaction nanochannel is sized and configured so that the fragments stay in an original order until they are injected into the detection nanochannel. Signal at one or more locations along the detection nanochannel is detected to map fragments in the order they occur along a long DNA molecule.
    Type: Application
    Filed: March 1, 2017
    Publication date: June 22, 2017
    Inventors: John Michael Ramsey, Laurent Menard
  • Publication number: 20170170001
    Abstract: Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm2 to about 25 cm2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 15, 2017
    Inventor: John Michael Ramsey
  • Publication number: 20170110307
    Abstract: Methods, systems and devices that provide fluid devices with at least one SPE bed adjacent (upstream of) a separation channel which may be in communication with an inlet of a Mass Spectrometer. The fluid device can be configured to operate using independently applied pressures to a BGE reservoir and a sample reservoir for pressure-driven injection that can inject a discrete sample plug into a separation channel that does not require voltage applied to the sample reservoir and can allow for in-channel focusing methods to be used. The methods, systems and devices are particularly suitable for use with a mass spectrometer but optical or other electronic detectors may also be used with the fluidic devices.
    Type: Application
    Filed: March 24, 2016
    Publication date: April 20, 2017
    Inventors: John Scott Mellors, William A. Black, John Michael Ramsey
  • Patent number: 9620351
    Abstract: Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm2 to about 25 cm2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: April 11, 2017
    Assignee: The University of North Carolina at Chapel Hill
    Inventor: John Michael Ramsey
  • Patent number: 9617589
    Abstract: A microfluidic device includes a plurality of reaction wells; and a plurality of solid supports, and each of the solid supports has a reagent attached thereto. The reagent is attached to the solid support via a labile reagent/support bond such that the reagent is configured to be cleaved from the support via a cleaving operation.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 11, 2017
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: John Michael Ramsey, William Henley, Emily Oblath
  • Patent number: 9618479
    Abstract: Devices and methods generate an ordered restriction map of genomic DNA extracted from whole cells. The devices have a fluidic microchannel that merges into a reaction nanochannel that merges into a detection nanochannel at an interface where the nanochannel diameter decreases in size by between 50% to 99%. Intact molecules of DNA are transported to the reaction nanochannel and then fragmented in the reaction nanochannel using restriction endonuclease enzymes. The reaction nanochannel is sized and configured so that the fragments stay in an original order until they are injected into the detection nanochannel. Signal at one or more locations along the detection nanochannel is detected to map fragments in the order they occur along a long DNA molecule.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: April 11, 2017
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: John Michael Ramsey, Laurent Menard
  • Publication number: 20170098535
    Abstract: An electrospray ionization (ESI)-mass spectrometer analysis systems include an ESI device with at least one emitter configured to electrospray ions and a mass spectrometer in fluid communication with the at least one emitter of the ESI device. The mass spectrometer includes a mass analyzer held in a vacuum chamber. The vacuum chamber is configured to have a high (background/gas) pressure of about 50 mTorr or greater during operation. During operation, the ESI device is configured to either; (a) electrospray ions into a spatial region external to the vacuum chamber and at atmospheric pressure, the spatial extent being adjacent to an inlet device attached to the vacuum chamber, the inlet device intakes the electrosprayed ions external to the vacuum chamber with the mass analyzer and discharges the ions into the vacuum chamber with the mass analyzer; or (b) electrospray ions directly into the vacuum chamber with the mass analyzer.
    Type: Application
    Filed: June 23, 2016
    Publication date: April 6, 2017
    Inventors: John Michael Ramsey, William McKay Gilliland, JR.
  • Patent number: 9606082
    Abstract: Methods that allow independently applied pressures to a BGE reservoir and a sample reservoir for pressure-driven injection that can inject a discrete sample plug into a separation channel that does not require voltage applied to the sample reservoir and can allow for in-channel focusing methods to be used. The methods are particularly suitable for use with a mass spectrometer.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: March 28, 2017
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: John Scott Mellors, Erin Anne Redman, John Michael Ramsey
  • Publication number: 20170025263
    Abstract: Methods, systems and devices that generate differential axial transport in a fluidic device having at least one fluidic sample separation flow channel and at least one ESI emitter in communication with the at least one sample separation flow channel. In response to the generated differential axial transport, the at least one target analyte contained in a sample reservoir in communication with the sample separation channel is selectively transported to the at least one ESI emitter while inhibiting transport of contaminant materials contained in the sample reservoir toward the at least one ESI emitter thereby preferentially directing analyte molecules out of the at least one ESI emitter. The methods, systems and devices are particularly suitable for use with a mass spectrometer.
    Type: Application
    Filed: October 4, 2016
    Publication date: January 26, 2017
    Inventors: John Scott Mellors, John Michael Ramsey, Nicholas George Batz
  • Patent number: 9502225
    Abstract: Methods, systems and devices that generate differential axial transport in a fluidic device having at least one fluidic sample separation flow channel and at least one ESI emitter in communication with the at least one sample separation flow channel. In response to the generated differential axial transport, the at least one target analyte contained in a sample reservoir in communication with the sample separation channel is selectively transported to the at least one ESI emitter while inhibiting transport of contaminant materials contained in the sample reservoir toward the at least one ESI emitter thereby preferentially directing analyte molecules out of the at least one ESI emitter. The methods, systems and devices are particularly suitable for use with a mass spectrometer.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: November 22, 2016
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: John Scott Mellors, John Michael Ramsey, Nicholas George Batz
  • Publication number: 20160334363
    Abstract: Methods that allow independently applied pressures to a BGE reservoir and a sample reservoir for pressure-driven injection that can inject a discrete sample plug into a separation channel that does not require voltage applied to the sample reservoir and can allow for in-channel focusing methods to be used. The methods are particularly suitable for use with a mass spectrometer.
    Type: Application
    Filed: January 4, 2016
    Publication date: November 17, 2016
    Inventors: John Scott Mellors, Erin Anne Redman, John Michael Ramsey
  • Publication number: 20160268117
    Abstract: Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm2 to about 25 cm2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.
    Type: Application
    Filed: May 20, 2016
    Publication date: September 15, 2016
    Inventor: John Michael Ramsey
  • Patent number: 9406492
    Abstract: An electrospray ionization (ESI)-mass spectrometer analysis systems include an ESI device with at least one emitter configured to electrospray ions and a mass spectrometer in fluid communication with the at least one emitter of the ESI device. The mass spectrometer includes a mass analyzer held in a vacuum chamber. The vacuum chamber is configured to have a high (background/gas) pressure of about 50 mTorr or greater during operation. During operation, the ESI device is configured to either; (a) electrospray ions into a spatial region external to the vacuum chamber and at atmospheric pressure, the spatial extent being adjacent to an inlet device attached to the vacuum chamber, the inlet device intakes the electrosprayed ions external to the vacuum chamber with the mass analyzer and discharges the ions into the vacuum chamber with the mass analyzer; or (b) electrospray ions directly into the vacuum chamber with the mass analyzer.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: August 2, 2016
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: John Michael Ramsey, William McKay Gilliland, Jr.
  • Patent number: 9373492
    Abstract: Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm2 to about 25 cm2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 21, 2016
    Assignee: The University of North Carolina at Chapel Hill
    Inventor: John Michael Ramsey
  • Publication number: 20160047778
    Abstract: Devices and methods generate an ordered restriction map of genomic DNA extracted from whole cells. The devices have a fluidic microchannel that merges into a reaction nanochannel that merges into a detection nanochannel at an interface where the nanochannel diameter decreases in size by between 50% to 99%. Intact molecules of DNA are transported to the reaction nanochannel and then fragmented in the reaction nanochannel using restriction endonuclease enzymes. The reaction nanochannel is sized and configured so that the fragments stay in an original order until they are injected into the detection nanochannel. Signal at one or more locations along the detection nanochannel is detected to map fragments in the order they occur along a long DNA molecule.
    Type: Application
    Filed: October 29, 2015
    Publication date: February 18, 2016
    Inventors: John Michael Ramsey, Laurent Menard