Patents by Inventor JOHN MICHAEL WILLIFORD
JOHN MICHAEL WILLIFORD has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12161766Abstract: The presently disclosed subject matter provides methods for continuously generating uniform polyelectrolyte complex (PEC) nanoparticles comprising: flowing a first stream comprising one or more water-soluble polycationic polymers at a first variable flow rate into a confined chamber; flowing a second stream comprising one or more water-soluble polyanionic polymers at a second variable flow rate into the confined chamber; and impinging the first stream and the second stream in the confined chamber until the Reynolds number is from about 1,000 to about 20,000, thereby causing the one or more water-soluble polycationic polymers and the one or more water-soluble polyanionic polymers to undergo a polyelectrolyte complexation process that continuously generates PEC nanoparticles. Compositions produced from the presently disclosed methods and a device for producing the compositions are also disclosed.Type: GrantFiled: February 7, 2023Date of Patent: December 10, 2024Assignee: The Johns Hopkins UniversityInventors: Hai-Quan Mao, Jose Luis Santos, Yong Ren, John-Michael Williford
-
Publication number: 20230190667Abstract: The presently disclosed subject matter provides methods for continuously generating uniform polyelectrolyte complex (PEC) nanoparticles comprising: flowing a first stream comprising one or more water-soluble polycationic polymers at a first variable flow rate into a confined chamber; flowing a second stream comprising one or more water-soluble polyanionic polymers at a second variable flow rate into the confined chamber; and impinging the first stream and the second stream in the confined chamber until the Reynolds number is from about 1,000 to about 20,000, thereby causing the one or more water-soluble polycationic polymers and the one or more water-soluble polyanionic polymers to undergo a polyelectrolyte complexation process that continuously generates PEC nanoparticles. Compositions produced from the presently disclosed methods and a device for producing the compositions are also disclosed.Type: ApplicationFiled: February 7, 2023Publication date: June 22, 2023Inventors: Hai-Quan Mao, Jose Luis Santos, Yong Ren, John-Michael Williford
-
Publication number: 20230165872Abstract: Provided herein are methods, compositions and uses for treating subjects with diseases and conditions, such as those involving or associated with B cell maturation antigen (BCMA), involving administration of a T cell therapy, such as a BCMA-targeted T cell therapy, e.g. anti-BCMA CART cells, in combination with (S)-3-[4-(4-morpholin-4-ylmethyl-benzyloxy)-1-oxo-1,3-dihydro-isoindol-2-yl]-piperidine-2, 6-dione, or a pharmaceutically acceptable salt, solvate, hydrate, stereoisomer, tautomer or racemic mixtures thereof, and compositions thereof, or in combination with (S)-4-(4-(4-(((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)oxy)methyl)benzyl)piperazin-1-yl)-3-fluorobenzonitrile, or a pharmaceutically acceptable salt, solvate, hydrate, stereoisomer, tautomer or racemic mixtures thereof, and compositions thereof. The T cell therapy includes cells that express recombinant receptors such as chimeric antigen receptors (CARs) directed against BCMA.Type: ApplicationFiled: April 27, 2021Publication date: June 1, 2023Applicant: Juno Therapeutics, Inc.Inventors: Michael PORTS, Oleksandr BATUREVYCH, Neha SONI, John-Michael WILLIFORD, Melissa WORKS
-
Patent number: 11395805Abstract: The presently disclosed subject matter provides methods for continuously generating uniform polyelectrolyte complex (PEC) nanoparticles comprising: flowing a first stream comprising one or more water-soluble polycationic polymers at a first variable flow rate into a confined chamber; flowing a second stream comprising one or more water-soluble polyanionic polymers at a second variable flow rate into the confined chamber; and impinging the first stream and the second stream in the confined chamber until the Reynolds number is from about 1,000 to about 20,000, thereby causing the one or more water-soluble polycationic polymers and the one or more water-soluble polyanionic polymers to undergo a polyelectrolyte complexation process that continuously generates PEC nanoparticles. Compositions produced from the presently disclosed methods and a device for producing the compositions are also disclosed.Type: GrantFiled: September 30, 2019Date of Patent: July 26, 2022Assignee: The Johns Hopkins UniversityInventors: Hai-Quan Mao, Jose Luis Santos, Yong Ren, John-Michael Williford
-
Patent number: 11235071Abstract: Compositions comprising a polymeric micellar nanoparticle composition comprising a block or graft copolymer comprising at least one polycationic polymer and at least one polyethylene glycol (PEG) polymer having an average molecular weight less than 1 kDa, and at least one nucleic acid, wherein the graft or block copolymer and at least one nucleic acid are complexed and condensed into a shaped micellar nanoparticle that is stable in biological media are disclosed. The presently disclosed subject matter also provides a method for preparing the presently disclosed polymeric micellar nanoparticle compositions, a method for targeting at least one metastatic cancer cell in a subject, and a method for treating a disease or condition using the presently disclosed polymeric micellar nanoparticle compositions.Type: GrantFiled: February 7, 2018Date of Patent: February 1, 2022Assignee: The Johns Hopkins UniversityInventors: Hai-Quan Mao, John Michael Williford, Maani Archang, Il Minn, Yong Ren, Jose Luis Santos, Martin G. Pomper
-
Publication number: 20200101023Abstract: The presently disclosed subject matter provides methods for continuously generating uniform polyelectrolyte complex (PEC) nanoparticles comprising: flowing a first stream comprising one or more water-soluble polycationic polymers at a first variable flow rate into a confined chamber; flowing a second stream comprising one or more water-soluble polyanionic polymers at a second variable flow rate into the confined chamber; and impinging the first stream and the second stream in the confined chamber until the Reynolds number is from about 1,000 to about 20,000, thereby causing the one or more water-soluble polycationic polymers and the one or more water-soluble polyanionic polymers to undergo a polyelectrolyte complexation process that continuously generates PEC nanoparticles. Compositions produced from the presently disclosed methods and a device for producing the compositions are also disclosed.Type: ApplicationFiled: September 30, 2019Publication date: April 2, 2020Inventors: Hai-Quan Mao, Jose Luis Santos, Yong Ren, John-Michael Williford
-
Patent number: 10441549Abstract: The presently disclosed subject matter provides methods for continuously generating uniform polyelectrolyte complex (PEC) nanoparticles comprising: flowing a first stream comprising one or more water-soluble polycationic polymers at a first variable flow rate into a confined chamber; flowing a second stream comprising one or more water-soluble polyanionic polymers at a second variable flow rate into the confined chamber; and impinging the first stream and the second stream in the confined chamber until the Reynolds number is from about 1,000 to about 20,000, thereby causing the one or more water-soluble polycationic polymers and the one or more water-soluble polyanionic polymers to undergo a polyelectrolyte complexation process that continuously generates PEC nanoparticles. Compositions produced from the presently disclosed methods and a device for producing the compositions are also disclosed.Type: GrantFiled: July 27, 2016Date of Patent: October 15, 2019Assignee: The Johns Hopkins UniversityInventors: Hai-Quan Mao, Jose Luis Santos, Yong Ren, John-Michael Williford
-
Publication number: 20180177892Abstract: Compositions comprising a polymeric micellar nanoparticle composition comprising a block or graft copolymer comprising at least one polycationic polymer and at least one polyethylene glycol (PEG) polymer having an average molecular weight less than 1 kDa, and at least one nucleic acid, wherein the graft or block copolymer and at least one nucleic acid are complexed and condensed into a shaped micellar nanoparticle that is stable in biological media are disclosed. The presently disclosed subject matter also provides a method for preparing the presently disclosed polymeric micellar nanoparticle compositions, a method for targeting at least one metastatic cancer cell in a subject, and a method for treating a disease or condition using the presently disclosed polymeric micellar nanoparticle compositions.Type: ApplicationFiled: February 7, 2018Publication date: June 28, 2018Inventors: HAI-QUAN MAO, JOHN MICHAEL WILLIFORD, MAANI ARCHANG, IL MINN, YONG REN, JOSE LUIS SANTOS, MARTIN G. POMPER
-
Publication number: 20170042829Abstract: The presently disclosed subject matter provides methods for continuously generating uniform polyelectrolyte complex (PEC) nanoparticles comprising: flowing a first stream comprising one or more water-soluble polycationic polymers at a first variable flow rate into a confined chamber; flowing a second stream comprising one or more water-soluble polyanionic polymers at a second variable flow rate into the confined chamber; and impinging the first stream and the second stream in the confined chamber until the Reynolds number is from about 1,000 to about 20,000, thereby causing the one or more water-soluble polycationic polymers and the one or more water-soluble polyanionic polymers to undergo a polyelectrolyte complexation process that continuously generates PEC nanoparticles. Compositions produced from the presently disclosed methods and a device for producing the compositions are also disclosed.Type: ApplicationFiled: July 27, 2016Publication date: February 16, 2017Applicant: THE JOHNS HOPKINS UNIVERSITYInventors: HAI-QUAN MAO, JOSE LUIS SANTOS, YONG REN, JOHN-MICHAEL WILLIFORD
-
Publication number: 20160331845Abstract: Compositions comprising a polymeric micellar nanoparticle composition comprising a block or graft copolymer comprising at least one polycationic polymer and at least one polyethylene glycol (PEG) polymer having an average molecular weight less than 1 kDa, and at least one nucleic acid, wherein the graft or block copolymer and at least one nucleic acid are complexed and condensed into a shaped micellar nanoparticle that is stable in biological media are disclosed. The presently disclosed subject matter also provides a method for preparing the presently disclosed polymeric micellar nanoparticle compositions, a method for targeting at least one metastatic cancer cell in a subject, and a method for treating a disease or condition using the presently disclosed polymeric micellar nanoparticle compositions.Type: ApplicationFiled: May 13, 2016Publication date: November 17, 2016Applicant: THE JOHNS HOPKINS UNIVERSITYInventors: HAI-QUAN MAO, JOHN MICHAEL WILLIFORD, MAANI ARCHANG, IL MINN, YONG REN, JOSE LUIS SANTOS, MARTIN G. POMPER