Patents by Inventor John Montrym

John Montrym has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220083068
    Abstract: An autonomous driving system could create or exacerbate a hazardous driving situation due to incorrect machine learning, algorithm design, sensor limitations, environmental conditions or other factors. This technology presents solutions that use machine learning to detect when the autonomous driving system is in this state e.g., erratic or reckless driving and other behavior, in order to take remedial action to prevent a hazard such as a collision.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 17, 2022
    Inventors: Philip SHIRVANI, Richard BRAMLEY, John MONTRYM, Nirmal SAXENA
  • Patent number: 11150663
    Abstract: An autonomous driving system could create or exacerbate a hazardous driving situation due to incorrect machine learning, algorithm design, sensor limitations, environmental conditions or other factors. This technology presents solutions that use machine learning to detect when the autonomous driving system is in this state e.g., erratic or reckless driving and other behavior, in order to take remedial action to prevent a hazard such as a collision.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: October 19, 2021
    Assignee: NVIDIA Corporation
    Inventors: Philip Shirvani, Richard Bramley, John Montrym, Nirmal Saxena
  • Publication number: 20190235515
    Abstract: An autonomous driving system could create or exacerbate a hazardous driving situation due to incorrect machine learning, algorithm design, sensor limitations, environmental conditions or other factors. This technology presents solutions that use machine learning to detect when the autonomous driving system is in this state e.g., erratic or reckless driving and other behavior, in order to take remedial action to prevent a hazard such as a collision.
    Type: Application
    Filed: January 25, 2019
    Publication date: August 1, 2019
    Inventors: Philip SHIRVANI, Richard BRAMLEY, John MONTRYM, Nirmal SAXENA
  • Patent number: 10216521
    Abstract: A method, computer readable medium, and system are disclosed for error coping. The method includes the steps of receiving, by a processing unit, a set of program instructions including a first program instruction that is responsive to error detection, detecting an error in a value of a first operand of the first program instruction, and determining that error coping execution is selectively enabled for the first instruction. The value for the first operand is replaced with a substitute value and the first program instruction is executed by the processing unit.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: February 26, 2019
    Assignee: NVIDIA Corporation
    Inventors: Philip Payman Shirvani, Richard Gavin Bramley, John Montrym
  • Publication number: 20180365017
    Abstract: A method, computer readable medium, and system are disclosed for error coping. The method includes the steps of receiving, by a processing unit, a set of program instructions including a first program instruction that is responsive to error detection, detecting an error in a value of a first operand of the first program instruction, and determining that error coping execution is selectively enabled for the first instruction. The value for the first operand is replaced with a substitute value and the first program instruction is executed by the processing unit.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 20, 2018
    Inventors: Philip Payman Shirvani, Richard Gavin Bramley, John Montrym
  • Patent number: 8610729
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: December 17, 2013
    Assignee: Graphic Properties Holdings, Inc.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
  • Publication number: 20120262470
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Application
    Filed: June 12, 2012
    Publication date: October 18, 2012
    Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
  • Patent number: 8289334
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: October 16, 2012
    Assignee: Graphics Properties Holdings, Inc.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher Migdal, Danny D. Loh
  • Publication number: 20120256942
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Application
    Filed: June 12, 2012
    Publication date: October 11, 2012
    Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
  • Publication number: 20120256932
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Application
    Filed: June 12, 2012
    Publication date: October 11, 2012
    Applicant: Graphics Properties Holdings, Inc.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
  • Publication number: 20120256933
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Application
    Filed: June 12, 2012
    Publication date: October 11, 2012
    Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
  • Publication number: 20120249548
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Application
    Filed: June 12, 2012
    Publication date: October 4, 2012
    Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
  • Publication number: 20120249561
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Application
    Filed: June 12, 2012
    Publication date: October 4, 2012
    Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
  • Publication number: 20120249562
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Application
    Filed: June 12, 2012
    Publication date: October 4, 2012
    Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
  • Publication number: 20120249566
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Application
    Filed: June 12, 2012
    Publication date: October 4, 2012
    Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
  • Publication number: 20120139931
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Application
    Filed: February 16, 2012
    Publication date: June 7, 2012
    Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
  • Patent number: 8144158
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: March 27, 2012
    Assignee: Graphics Properties Holdings, Inc.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
  • Publication number: 20110169842
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 14, 2011
    Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
  • Publication number: 20100079471
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Application
    Filed: December 7, 2009
    Publication date: April 1, 2010
    Applicant: GRAPHICS PROPERTIES HOLDINGS, INC.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh
  • Patent number: 7518615
    Abstract: A floating point rasterization and frame buffer in a computer system graphics program. The rasterization, fog, lighting, texturing, blending, and antialiasing processes operate on floating point values. In one embodiment, a 16-bit floating point format consisting of one sign bit, ten mantissa bits, and five exponent bits (s10e5), is used to optimize the range and precision afforded by the 16 available bits of information. In other embodiments, the floating point format can be defined in the manner preferred in order to achieve a desired range and precision of the data stored in the frame buffer. The final floating point values corresponding to pixel attributes are stored in a frame buffer and eventually read and drawn for display. The graphics program can operate directly on the data in the frame buffer without losing any of the desired range and precision of the data.
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: April 14, 2009
    Assignee: Silicon Graphics, Inc.
    Inventors: John M. Airey, Mark S. Peercy, Robert A. Drebin, John Montrym, David L. Dignam, Christopher J. Migdal, Danny D. Loh