Patents by Inventor John Morriss

John Morriss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9763780
    Abstract: A prosthetic heart valve device (100) for percutaneous replacement of a native heart valve includes an expandable retainer (110) at least partially surrounding and coupled to an inner valve support (120). The device can further include a prosthetic valve (130) coupled to the valve support. The retainer forms a donut-shaped flange (190) having an arcuate outer surface (142) for engaging tissue and an inner lumen defining a passage for blood to flow through the valve support. The retainer can include a plurality of circumferentially positioned, resiliency deformable and flexible ribs (114) which are coupled at their downstream ends 116 to the valve support 120. The flexible ribs, in one embodiment, can have a general C-shape configuration with the tips (117) of the flexible ribs and an opening (119) of the C-shape configuration oriented toward a longitudinal axis (101) of the device.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: September 19, 2017
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Hanson Gifford, III, James I. Fann, Jean-Pierre Dueri, Darin Gittings, Michael Luna, Mark Deem, Douglas Sutton
  • Publication number: 20170165057
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Application
    Filed: March 14, 2014
    Publication date: June 15, 2017
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Publication number: 20170143481
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an expandable support having an outer surface and configured for placement between leaflets of the native valve. The device can also include a plurality of asymmetrically arranged arms coupled to the expandable support and configured to receive the leaflets of the native valve between the arms and the outer surface. In some embodiments, the arms can include tip portions for engaging a subannular surface of the native valve.
    Type: Application
    Filed: January 25, 2017
    Publication date: May 25, 2017
    Inventors: John Morriss, Hanson Gifford, III
  • Patent number: 9655722
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 23, 2017
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Publication number: 20170128204
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an expandable support having an outer surface and configured for placement between leaflets of the native valve. The device can also include a plurality of asymmetrically arranged arms coupled to the expandable support and configured to receive the leaflets of the native valve between the arms and the outer surface. In some embodiments, the arms can include tip portions for engaging a subannular surface of the native valve.
    Type: Application
    Filed: January 25, 2017
    Publication date: May 11, 2017
    Inventors: John Morriss, Hanson Gifford, III
  • Publication number: 20170128209
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an anchoring member having an upstream portion configured to engage with tissue on or near the annulus of the native heart valve and to deform in a non-circular shape to conform to the tissue. The device can also include a mechanically isolated valve support coupled to the anchoring member and configured to support a prosthetic valve. The device can further include an atrial extension member extending radially outward from the upstream portion of the anchoring member and which is deformable without substantially deforming the anchoring member. In some embodiments, the upstream portion of the anchoring member and the extension member may be deformed while the valve support remains sufficiently stable.
    Type: Application
    Filed: January 26, 2017
    Publication date: May 11, 2017
    Inventors: John Morriss, Matt McLean, Maureen Bensing, Jean-Pierre Dueri, Hanson Gifford, III, Katie Miyashiro, David Jerry Scott, David Trask, Kirsten Valley
  • Patent number: 9615775
    Abstract: Devices and methods for accurately determining the size of an ostium of a patient and in particular sinus ostium. Methods for measuring a target ostium comprise inserting the distal end portion of an ostium measuring device into a patient, locating the target ostium with the measuring device, positioning the distal end portion of the measuring device appropriately adjacent to or into the target ostium and determining the diameter(s) of the target ostium by comparing the length, diameter and/or the circumference of the portion of the distal end portion of the measuring device adjacent to or within the target ostium.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: April 11, 2017
    Assignee: Acclarent, Inc.
    Inventor: John Morriss
  • Patent number: 9603506
    Abstract: Devices and methods for visually confirming the positioning of a distal end portion of an illuminating device placed within a patient include inserting a distal end portion of an illuminating device internally into a patient, emitting light from the distal end portion of the illuminating device, observing transillumination resulting from the light emitted from the distal end portion of the illuminating device that occurs on an external surface of the patient, and correlating the location of the observed transillumination on the external surface of the patient with an internal location of the patient that underlies the location of observed transillumination, to confirm positioning of the distal end portion of the illuminating device.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: March 28, 2017
    Assignee: Acclarent, Inc.
    Inventors: Eric Goldfarb, John Morriss, John Y. Chang, William M. Facteau
  • Patent number: 9585751
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an expandable support having an outer surface and configured for placement between leaflets of the native valve. The device can also include a plurality of asymmetrically arranged arms coupled to the expandable support and configured to receive the leaflets of the native valve between the arms and the outer surface. In some embodiments, the arms can include tip portions for engaging a subannular surface of the native valve.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: March 7, 2017
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Hanson Gifford, III
  • Patent number: 9579196
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an expandable support having an outer surface and configured for placement between leaflets of the native valve. The device can also include a plurality of asymmetrically arranged arms coupled to the expandable support and configured to receive the leaflets of the native valve between the arms and the outer surface. In some embodiments, the arms can include tip portions for engaging a subannular surface of the native valve.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: February 28, 2017
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Hanson Gifford, III
  • Patent number: 9579198
    Abstract: Systems, apparatuses, and methods for treating native heart valves are disclosed herein. A system for delivering a prosthetic device into a heart of a patient includes an elongated catheter body and a delivery capsule. The delivery capsule can be hydraulically driven to deploy at least a portion of a prosthetic heart valve device. The delivery capsule can release the prosthetic heart valve device at a desired treatment site in a patient.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: February 28, 2017
    Assignee: Twelve, Inc.
    Inventors: Mark Deem, Hanson Gifford, III, John Morriss, Matt McLean, Michael Luna
  • Patent number: 9572662
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an expandable support having an outer surface and configured for placement between leaflets of the native valve. The device can also include a plurality of asymmetrically arranged arms coupled to the expandable support and configured to receive the leaflets of the native valve between the arms and the outer surface. In some embodiments, the arms can include tip portions for engaging a subannular surface of the native valve.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: February 21, 2017
    Assignee: Twelve, Inc.
    Inventors: John Morriss, Hanson Gifford, III
  • Publication number: 20170035569
    Abstract: Systems, apparatuses, and methods for treating native heart valves are disclosed herein. A system for delivering a prosthetic device into a heart of a patient includes an elongated catheter body and a delivery capsule. The delivery capsule can be hydraulically driven to deploy at least a portion of a prosthetic heart valve device. The delivery capsule can release the prosthetic heart valve device at a desired treatment site in a patient.
    Type: Application
    Filed: October 6, 2016
    Publication date: February 9, 2017
    Inventors: Mark Deem, Hanson Gifford, III, John Morriss, Matt McLean, Michael Luna
  • Publication number: 20160324640
    Abstract: Systems for mitral valve repair are disclosed where one or more mitral valve interventional devices may be advanced intravascularly into the heart of a patient and deployed upon or along the mitral valve to stabilize the valve leaflets. The interventional device may also facilitate the placement or anchoring of a prosthetic mitral valve implant. The interventional device may generally comprise a distal set of arms pivotably and/or rotating coupled to a proximal set of arms which are also pivotably and/or rotating coupled. The distal set of arms may be advanced past the catheter opening to a subannular position (e.g., below the mitral valve) and reconfigured from a low-profile delivery configuration to a deployed securement configuration. The proximal arm members may then be deployed such that the distal and proximal arm members may grip the leaflets between the two sets of arms to stabilize the leaflets.
    Type: Application
    Filed: July 15, 2016
    Publication date: November 10, 2016
    Inventors: Hanson S. Gifford, III, James I. Fann, John Morriss, Mark Deem, Jeffry J. Grainger
  • Publication number: 20160242906
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an expandable support having an outer surface and configured for placement between leaflets of the native valve. The device can also include a plurality of asymmetrically arranged arms coupled to the expandable support and configured to receive the leaflets of the native valve between the arms and the outer surface. In some embodiments, the arms can include tip portions for engaging a subannular surface of the native valve.
    Type: Application
    Filed: May 4, 2016
    Publication date: August 25, 2016
    Inventors: John Morriss, Hanson Gifford, III
  • Publication number: 20160242902
    Abstract: Prosthetic heart valve devices for percutaneous replacement of native heart valves and associated systems and method are disclosed herein. A prosthetic heart valve device configured in accordance with a particular embodiment of the present technology can include an expandable support having an outer surface and configured for placement between leaflets of the native valve. The device can also include a plurality of asymmetrically arranged arms coupled to the expandable support and configured to receive the leaflets of the native valve between the arms and the outer surface. In some embodiments, the arms can include tip portions for engaging a subannular surface of the native valve.
    Type: Application
    Filed: May 4, 2016
    Publication date: August 25, 2016
    Inventors: John Morriss, Hanson Gifford, III
  • Patent number: 9421098
    Abstract: Systems for mitral valve repair are disclosed where one or more mitral valve interventional devices may be advanced intravascularly into the heart of a patient and deployed upon or along the mitral valve to stabilize the valve leaflets. The interventional device may also facilitate the placement or anchoring of a prosthetic mitral valve implant. The interventional device may generally comprise a distal set of arms pivotably and/or rotating coupled to a proximal set of arms which are also pivotably and/or rotating coupled. The distal set of arms may be advanced past the catheter opening to a subannular position (e.g., below the mitral valve) and reconfigured from a low-profile delivery configuration to a deployed securement configuration. The proximal arm members may then be deployed such that the distal and proximal arm members may grip the leaflets between the two sets of arms to stabilize the leaflets.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: August 23, 2016
    Assignee: Twelve, Inc.
    Inventors: Hanson S. Gifford, III, James I. Fann, John Morriss, Mark Deem, Jeffry J. Grainger
  • Publication number: 20160213758
    Abstract: A system for delivering a therapeutic agent to a nasopharyngeal mucosa target comprises a foam generating mechanism, a gas, a therapeutic agent in liquid form that inhibits mucus production, and a delivery device. Actuation of the foam generating mechanism entraps gaseous bubbles from the gas in the liquid thereby forming a foam. The therapeutic agent is dispersed in the foam which has an expanded configuration adapted to fill a nasopharyngeal space and deliver the therapeutic agent to the mucosa targets. The delivery device is for delivering the foam to the nasopharyngeal space. The foam may also have a collapsed configuration for removal from the nasopharyngeal space or for concentration of the therapeutic agent onto the mucosa.
    Type: Application
    Filed: April 1, 2016
    Publication date: July 28, 2016
    Inventors: John MORRISS, Cary REICH, Hanson GIFFORD
  • Patent number: 9327104
    Abstract: A system for delivering a therapeutic agent to a nasopharyngeal mucosa target comprises a foam generating mechanism, a gas, a therapeutic agent in liquid form that inhibits mucus production, and a delivery device. Actuation of the foam generating mechanism entraps gaseous bubbles from the gas in the liquid thereby forming a foam. The therapeutic agent is dispersed in the foam which has an expanded configuration adapted to fill a nasopharyngeal space and deliver the therapeutic agent to the mucosa targets. The delivery device is for delivering the foam to the nasopharyngeal space. The foam may also have a collapsed configuration for removal from the nasopharyngeal space or for concentration of the therapeutic agent onto the mucosa.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: May 3, 2016
    Assignee: The Foundry, LLC
    Inventors: John Morriss, Cary Reich, Hanson Gifford
  • Patent number: 9295552
    Abstract: Devices and methods for implantation at a native mitral valve having a non-circular annulus and leaflets. One embodiment of the device includes a valve support having a first region configured to be attached to a prosthetic valve with a plurality of prosthetic leaflets and a second region. The device can further include an anchoring member having a longitudinal dimension and including a first portion configured to contact tissue at the non-circular annulus, a second portion configured to be attached to the valve support, and a lateral portion between the first portion and the second portion. The second portion of the anchoring member is attached to the second region of the valve support while in a low-profile configuration in which the anchoring member and the valve support are configured to pass through vasculature of a human. The lateral portion is transverse to the longitudinal dimension.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: March 29, 2016
    Assignee: Twelve, Inc.
    Inventors: Matt McLean, John Morriss, Hanson Gifford, III