Patents by Inventor John N. Buzzard

John N. Buzzard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11897346
    Abstract: A control system for an electric motor powered by a battery can be configured to receive an input instantaneous power or torque command corresponding to a commanded instantaneous power or torque. The control system can be configured to determine if the battery is capable of supplying the commanded instantaneous power or torque based on a state of charge (SOC) of the battery. The control system can be configured such that if the battery is capable of supplying the commanded instantaneous power or torque, the control system outputs the input instantaneous power or torque command, and such that if the battery is not capable of supplying the commanded instantaneous power or torque, the control system outputs an available maximum instantaneous power or torque command corresponding to an available maximum instantaneous power or torque that is less than the commanded instantaneous power or torque.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: February 13, 2024
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Kyle Stephen Ives, John N. Buzzard
  • Patent number: 11881797
    Abstract: A control system for an electric motor powered by a battery can be configured to receive an input power or torque command corresponding to a commanded power or torque. The control system can be configured to determine if the battery is capable of supplying the commanded power or torque over a time period based on a state of charge of the battery. The control system can be configured such that if the battery is capable of supplying the commanded power or torque over the time period, the control system outputs the input power or torque command, and if the battery is not capable of supplying the commanded power or torque over the time period, the control system outputs an available maximum power or torque command corresponding to an available maximum power or torque over the time period that is less than the commanded power or torque.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: January 23, 2024
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Kyle Stephen Ives, John N. Buzzard
  • Patent number: 11855301
    Abstract: An electrical storage system includes an electric storage zone, an electric storage positioned within the electric storage zone, a cooling fluid source in fluid communication with the electric storage zone via a fluid flow path, a modulating valve in the fluid flow path downstream from the cooling fluid source and upstream from the electric storage zone, and a detector in fluid communication with the electric storage zone. A method for operating an electrical storage system includes adjusting a modulating valve in a fluid flow path to reduce a cooling airflow to an electric storage zone, operating a detector in fluid communication with the electric storage zone configured and adapted to sense at least one of smoke, gas, or other particulates during a detection period with a detection system, and adjusting the modulating valve to increase the cooling airflow to the electric storage zone.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: December 26, 2023
    Assignee: Hamilton Sundstrand Corporation
    Inventors: John N. Buzzard, Chase Whitman
  • Patent number: 11807371
    Abstract: An aircraft includes a fuselage defining a longitudinal axis between a forward end and an aft end. The aircraft includes an electrical system having an electric storage. The electric storage is positioned within the fuselage.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: November 7, 2023
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Frank Becker, Frank Abruzzese, Patrick Linteau, Xi Wang, Antonio Pizzi, Charles E. Lents, John N. Buzzard
  • Patent number: 11702222
    Abstract: A system includes a first AC bus configured to supply power from a first AC power source. A second AC bus is configured to supply power from a second AC power source. A first transformer rectifier unit (TRU) connects a first DC bus to the first AC bus through a first TRU contactor (TRUC). A second TRU connects a second DC bus to the second AC bus through a second TRUC. A ram air turbine (RAT) automatic deployment controller is operatively connected to the first TRUC and to the second TRUC to automatically deploy a RAT based on the combined status of the first TRUC and the second TRUC.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: July 18, 2023
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Ives
  • Publication number: 20230147395
    Abstract: A system includes a transformer rectifier unit (TRU) including a backfeed sense module. A contactor is operatively connected to the TRU for selectively supplying DC power to a DC bus from the TRU with the contactor closed and isolating the DC bus from the TRU with the contactor opened. A contactor driver is operatively connected to receive a signal from the backfeed sense module and to control opening and closing of the contactor based on the signal. The contactor driver is configured to open the contactor upon receipt of the signal indicative of backfeed detected in the TRU.
    Type: Application
    Filed: November 5, 2021
    Publication date: May 11, 2023
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Jef William Good, Shane R. Traser, John N. Buzzard, Kyle Stephen Ives
  • Publication number: 20230145311
    Abstract: A closing mechanism controller includes contactor operating logic that generates a software or firmware based closing mechanism command signal. The controller also includes hardware interlock circuitry that generates an interlock signal, the hardware interlock circuity being configured to compare an interlock signal to the software based closing mechanism command signal and to provide an enable signal to the closing mechanism when the interlock signal matches the closing mechanism command signal.
    Type: Application
    Filed: November 9, 2021
    Publication date: May 11, 2023
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Jef William Good, Shane R. Traser, John N. Buzzard, Kyle Stephen Ives
  • Patent number: 11616366
    Abstract: A system includes a first AC bus configured to supply power from a first generator. A second AC bus is configured to supply power from a second generator. An AC essential bus tie contactor (AETC) selectively connects between an AC essential bus and the first and second AC busses. An AETC controller is connected to switch the AETC between a first state connecting the AC essential bus to the first AC bus and a second state connecting the AC essential bus to the second AC bus. A sensor system is configured to detect at least one of delta current and overcurrent in the AC essential bus and in at least one of the first AC bus and the second AC bus. The sensor system is operatively connected to the AETC controller for switching the AETC between the first state and the second state based on input from the sensor system.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: March 28, 2023
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Jef William Good, Shane R. Traser, John N. Buzzard, Kyle Ives
  • Patent number: 11527976
    Abstract: A system includes a first AC bus configured to supply power from a first generator. A first generator line contactor (GLC) selectively connects the first AC bus to the first generator. A second AC bus is configured to supply power from a second generator. A second GLC selectively connecting the second AC bus to the second generator. An auxiliary generator line contactor (ALC) is connected to selectively supply power to the first and second AC buses from an auxiliary generator. A first bus tie contactor (BTC) electrically connects between the first GLC and the ALC. A second BTC electrically connects between the ALC and the second GLC. A ram air turbine (RAT) automatic deployment controller is operatively connected to automatically deploy a RAT based on the combined status of the first GLC, the second GLC, the ALC, the first BTC, and the second BTC.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: December 13, 2022
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Stephen Ives
  • Patent number: 11383855
    Abstract: A system includes a first AC bus configured to supply power from a first AC power source. A second AC bus is configured to supply power from a second AC power source. A first transformer rectifier unit (TRU) connects a first DC bus to the first AC bus through a first TRU contactor (TRUC). A second TRU connects a second DC bus to the second AC bus through a second TRUC. A first voltage sensor is connected to sense voltage of the first DC bus. A second voltage sensor is connected to sense voltage of the second DC bus. A ram air turbine (RAT) automatic deployment controller is operatively connected to the first voltage sensor and to the second voltage sensor to automatically deploy a RAT based on the combined status of the first voltage sensor and the second voltage sensor.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: July 12, 2022
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Stephen Ives
  • Publication number: 20210354569
    Abstract: A control system for an electric motor powered by a battery can be configured to receive an input instantaneous power or torque command corresponding to a commanded instantaneous power or torque. The control system can be configured to determine if the battery is capable of supplying and/or permitted to supply the commanded instantaneous power or torque based on a state of charge (SOC) of the battery. The control system can be configured such that if the battery is capable of supplying and/or permitted to supply the commanded instantaneous power or torque, the control system outputs the input instantaneous power or torque command, and such that if the battery is not capable of supplying and/or not permitted to supply the commanded instantaneous power or torque, the control system outputs an available maximum instantaneous power or torque command corresponding to an available maximum instantaneous power or torque that is less than the commanded instantaneous power or torque.
    Type: Application
    Filed: May 14, 2021
    Publication date: November 18, 2021
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Kyle Stephen Ives, John N. Buzzard
  • Publication number: 20210359631
    Abstract: A control system for an electric motor powered by a battery can be configured to receive an input power or torque command corresponding to a commanded power or torque. The control system can be configured to determine if the battery is capable of supplying and/or permitted to supply the commanded power or torque over a time period based on a state of charge (SOC) of the battery. The control system can be configured such that if the battery is capable of supplying and/or permitted to supply the commanded power or torque over the time period, the control system outputs the input power or torque command, and such that if the battery is not capable of supplying and/or not permitted to supply the commanded power or torque over the time period, the control system outputs an available maximum power or torque command corresponding to an available maximum power or torque over the time period that is less than the commanded power or torque.
    Type: Application
    Filed: May 14, 2021
    Publication date: November 18, 2021
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Kyle Stephen Ives, John N. Buzzard
  • Patent number: 11170962
    Abstract: A contactor with a rotary actuation system, the contactor including a plurality of switching devices configured to switch a plurality of electrical circuits, a plurality of cam followers each operably coupled to one of the switching devices, wherein each cam follower is configured to actuate a switching device, and a cam mechanism, the cam pivotally attached to a point rotation, the cam having plurality of lobes about its perimeter, the cam in operable communication with each cam follower such that upon rotation of the cam mechanism, each cam follower engages a lobe of the plurality of lobes, it causes each cam follower to actuate the respective switching device. The contactor also includes an actuator connected to the cam, the actuator responsive to a control current and operable to rotate the cam and a controller, the controller operable to supply a control current the actuator.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: November 9, 2021
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: John N. Buzzard, Francis C. Belisle
  • Publication number: 20210297025
    Abstract: A system includes a first AC bus configured to supply power from a first generator. A first generator line contactor (GLC) selectively connects the first AC bus to the first generator. A second AC bus is configured to supply power from a second generator. A second GLC selectively connecting the second AC bus to the second generator. An auxiliary generator line contactor (ALC) is connected to selectively supply power to the first and second AC buses from an auxiliary generator. A first bus tie contactor (BTC) electrically connects between the first GLC and the ALC. A second BTC electrically connects between the ALC and the second GLC. A ram air turbine (RAT) automatic deployment controller is operatively connected to automatically deploy a RAT based on the combined status of the first GLC, the second GLC, the ALC, the first BTC, and the second BTC.
    Type: Application
    Filed: May 10, 2021
    Publication date: September 23, 2021
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Stephen Ives
  • Publication number: 20210297024
    Abstract: A system includes a first AC bus configured to supply power from a first generator. A first generator line contactor (GLC) selectively connects the first AC bus to the first generator. A second AC bus is configured to supply power from a second generator. A second GLC selectively connecting the second AC bus to the second generator. An auxiliary generator line contactor (ALC) is connected to selectively supply power to the first and second AC buses from an auxiliary generator. A first bus tie contactor (BTC) electrically connects between the first GLC and the ALC. A second BTC electrically connects between the ALC and the second GLC. A ram air turbine (RAT) automatic deployment controller is operatively connected to automatically deploy a RAT based on the combined status of the first GLC, the second GLC, the ALC, the first BTC, and the second BTC.
    Type: Application
    Filed: March 17, 2020
    Publication date: September 23, 2021
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Ives
  • Publication number: 20210292001
    Abstract: A system includes a first AC bus configured to supply power from a first AC power source. A second AC bus is configured to supply power from a second AC power source. A first transformer rectifier unit (TRU) connects a first DC bus to the first AC bus through a first TRU contactor (TRUC). A second TRU connects a second DC bus to the second AC bus through a second TRUC. A ram air turbine (RAT) automatic deployment controller is operatively connected to the first TRUC and to the second TRUC to automatically deploy a RAT based on the combined status of the first TRUC and the second TRUC.
    Type: Application
    Filed: March 18, 2020
    Publication date: September 23, 2021
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Ives
  • Publication number: 20210292000
    Abstract: A system includes a first AC bus configured to supply power from a first AC power source. A second AC bus is configured to supply power from a second AC power source. A first transformer rectifier unit (TRU) connects a first DC bus to the first AC bus through a first TRU contactor (TRUC). A second TRU connects a second DC bus to the second AC bus through a second TRUC. A first voltage sensor is connected to sense voltage of the first DC bus. A second voltage sensor is connected to sense voltage of the second DC bus. A ram air turbine (RAT) automatic deployment controller is operatively connected to the first voltage sensor and to the second voltage sensor to automatically deploy a RAT based on the combined status of the first voltage sensor and the second voltage sensor.
    Type: Application
    Filed: March 18, 2020
    Publication date: September 23, 2021
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Stephen Ives
  • Publication number: 20210288498
    Abstract: A system includes a first AC bus configured to supply power from a first generator. A second AC bus is configured to supply power from a second generator. An AC essential bus tie contactor (AETC) selectively connects between an AC essential bus and the first and second AC busses. An AETC controller is connected to switch the AETC between a first state connecting the AC essential bus to the first AC bus and a second state connecting the AC essential bus to the second AC bus. A sensor system is configured to detect at least one of delta current and overcurrent in the AC essential bus and in at least one of the first AC bus and the second AC bus. The sensor system is operatively connected to the AETC controller for switching the AETC between the first state and the second state based on input from the sensor system.
    Type: Application
    Filed: March 12, 2020
    Publication date: September 16, 2021
    Applicant: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Jef William Good, Shane R. Traser, John N. Buzzard, Kyle Ives
  • Patent number: 11108349
    Abstract: A system includes a first AC bus configured to supply power from a first generator. A first generator line contactor (GLC) selectively connects the first AC bus to the first generator. A second AC bus is configured to supply power from a second generator. A second GLC selectively connecting the second AC bus to the second generator. An auxiliary generator line contactor (ALC) is connected to selectively supply power to the first and second AC buses from an auxiliary generator. A first bus tie contactor (BTC) electrically connects between the first GLC and the ALC. A second BTC electrically connects between the ALC and the second GLC. A ram air turbine (RAT) automatic deployment controller is operatively connected to automatically deploy a RAT based on the combined status of the first GLC, the second GLC, the ALC, the first BTC, and the second BTC.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: August 31, 2021
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Jordan K. Vanevenhoven, Jeffrey D. Myroth, Shane R. Traser, Jef William Good, John N. Buzzard, Kyle Ives
  • Publication number: 20210098763
    Abstract: An electrical storage system includes an electric storage zone, an electric storage positioned within the electric storage zone, a cooling fluid source in fluid communication with the electric storage zone via a fluid flow path, a modulating valve in the fluid flow path downstream from the cooling fluid source and upstream from the electric storage zone, and a detector in fluid communication with the electric storage zone. A method for operating an electrical storage system includes adjusting a modulating valve in a fluid flow path to reduce a cooling airflow to an electric storage zone, operating a detector in fluid communication with the electric storage zone configured and adapted to sense at least one of smoke, gas, or other particulates during a detection period with a detection system, and adjusting the modulating valve to increase the cooling airflow to the electric storage zone.
    Type: Application
    Filed: September 30, 2020
    Publication date: April 1, 2021
    Inventors: John N. Buzzard, Chase Whitman