Patents by Inventor John N. KHEIR

John N. KHEIR has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11717167
    Abstract: The inventors have developed tools for quantifying the mitochondrial redox state of in vivo, in situ tissue using resonance Raman spectroscopy. The tissue is illuminated with an excitation beam that causes the tissue to scatter Raman-shifted light, which is collected and analyzed to produce coefficients representing the relative concentrations of different chromophores in the tissue. These relative concentrations indicate the redox state of whole mitochondria, hemoglobin oxygen saturation, myoglobin oxygen saturation, and/or redox state of individual cytochrome complexes in mitochondria of the in vivo, in situ tissue. Quantifiable information about these states and/or saturations can be used to assess tissue health, including organ (dys)function before, during, and after surgery. For example, this information can be used to predict impending cardiac failure, to guide surgical interventions, to monitor organ health after transplantation, or to guide post-operative care.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: August 8, 2023
    Assignees: Pendar Technologies, LLC, Children's Medical Center Corporation
    Inventors: John P. Romfh, Daryoosh Vakhshoori, John N. Kheir, Peili Chen, Brian Polizzotti, Joshua Salvin, Alison Perry
  • Publication number: 20200281474
    Abstract: The inventors have developed tools for quantifying the mitochondrial redox state of in vivo, in situ tissue using resonance Raman spectroscopy. The tissue is illuminated with an excitation beam that causes the tissue to scatter Raman-shifted light, which is collected and analyzed to produce coefficients representing the relative concentrations of different chromophores in the tissue. These relative concentrations indicate the redox state of whole mitochondria, hemoglobin oxygen saturation, myoglobin oxygen saturation, and/or redox state of individual cytochrome complexes in mitochondria of the in vivo, in situ tissue. Quantifiable information about these states and/or saturations can be used to assess tissue health, including organ (dys)function before, during, and after surgery. For example, this information can be used to predict impending cardiac failure, to guide surgical interventions, to monitor organ health after transplantation, or to guide post-operative care.
    Type: Application
    Filed: March 18, 2020
    Publication date: September 10, 2020
    Inventors: John P. ROMFH, Daryoosh VAKHSHOORI, John N. KHEIR, Peili CHEN, Brian POLIZZOTTI, Joshua SALVIN, Alison PERRY