Patents by Inventor John Nenniger

John Nenniger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9476291
    Abstract: This invention is a solvent based gravity drainage process whereby the vertical growth rate of the chamber is restricted by placing, monitoring and managing a buoyant gas blanket at the top of the vapor chamber. This invention reduces the heat loss to the overburden as well as providing a means to preserve a barrier layer of bitumen saturated reservoir sand at the top of the pay zone in reservoirs where there is limited or no confining layer present.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: October 25, 2016
    Assignee: N-Solv Corporation
    Inventors: John Nenniger, Lowy Gunnewiek
  • Patent number: 9394769
    Abstract: An inflow control valve has a valve body having a threaded portion for connecting the valve body to a production tubing, a through bore for connecting the valve body to an inside bore of the production tubing and an outside surface; at least one inlet passageway extending through the valve body between the outside surface and the through bore and an inlet opening on the at least one inlet passageway formed on the outside surface of the valve body; a closure member for opening and closing the inlet opening, the closure member being located between the inlet opening and the annulus; and a member to bias the closure member to an open position when the inlet opening is submerged in a liquid to be recovered from the reservoir and to bias the closure member to a closed position in the absence of the liquid at the inlet opening.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: July 19, 2016
    Inventor: John Nenniger
  • Patent number: 8985205
    Abstract: An in situ extraction process for heavy oil reservoirs using solvent comprises removing liquids and gases from areas contacting with the heavy oils to increase an interfacial area of unextracted heavy oil contactable by the solvent. Solvent vapor is injected into the areas to raise the reservoir pressure until sufficient liquid solvent is present to contact the increased interfacial area. The reservoir is shut in for a sufficient time for the solvent to diffuse into the unextracted oil across the interfacial area in a ripening step to create a reduced viscosity blend of solvent and oil. One or more reservoir characteristics is measured to confirm the extent of solvent dilution that has occurred of the unextracted oil in the reservoir. Gravity drainage based production is commenced from the reservoir upon the blend having a viscosity low enough to permit the blend to drain through the reservoir to a production well.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: March 24, 2015
    Assignee: N-Solv Heavy Oil Corporation
    Inventor: John Nenniger
  • Publication number: 20150013978
    Abstract: An inflow control valve for controlling the flow of fluids into a generally horizontal production well located in an underground reservoir, where the production well has a well casing, a production tubing located within the casing and an annulus between the production tubing and the casing. The inflow control valve has a valve body having a threaded portion for connecting the valve body to the production tubing, a through bore for connecting the valve body to an inside bore of said production tubing and an outside surface. The valve also has at least one inlet passageway extending through the valve body between the outside surface and said through bore and an inlet opening on said at least one inlet passageway formed on the outside surface of the valve body.
    Type: Application
    Filed: December 14, 2012
    Publication date: January 15, 2015
    Inventor: John NENNIGER
  • Patent number: 8857512
    Abstract: An in situ extraction process for the recovery of hydrocarbons from a hydrocarbon bearing formation, including the steps of injecting a solvent consisting substantially of one of the group of H2S, Ammonia or COS into the formation to mobilize the hydrocarbons for extraction by forming a mobile in situ extraction fluid; and lifting the extraction fluid containing the mobilized hydrocarbons from the underground formation to the surface. In a further aspect an extraction method for a specific reservoir is provided including the steps of: establishing a minimum desired extraction rate, based on a value for the porosity, permeability and dead oil viscosity of the in situ bitumen in the specific reservoir, determining a desired minimum operating extraction temperature determining a desirable range of operating pressures identifying solvents predicted to deliver the operating extraction temperature within the range of operating pressures, and selecting a preferred solvent to use in the process.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: October 14, 2014
    Assignee: N-Solv Corporation
    Inventors: John Nenniger, Stephen Dunn
  • Patent number: 8776900
    Abstract: A process for recovering hydrocarbons from an in situ formation. The process includes the steps of injecting solvent though an injection well into an underground extraction chamber having a hydrocarbon extraction interface, warming the hydrocarbons at the extraction interface to cause the hydrocarbons to flow downwardly by gravity drainage. Barrier gases naturally emerge in the chamber as a result of the extraction process and are removed from the extraction interface to improve heat transfer from said solvent to said interface. The last step is to recover liquids such as hydrocarbons and water through a production well. The invention provides a separate flow path to remove hydrocarbon gases from the chamber at a preferred location. The preferred location is near the top of the chamber where the accumulated barrier gases help to limit the heat loss and can also provide a barrier to help maintain chamber integrity and confinement.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: July 15, 2014
    Inventors: John Nenniger, Emil Nenniger
  • Patent number: 8596357
    Abstract: A process for recovering hydrocarbons from an in situ formation. The process includes the steps of injecting steam though an injection well into an underground extraction chamber having a hydrocarbon extraction interface, warming the hydrocarbons at the extraction interface to cause the hydrocarbons to flow downwardly by gravity drainage and to release dissolved hydrocarbon gases and moving the hydrocarbon gases from the extraction interface to improve heat transfer from said steam to said interface. The last step is to recover liquids such as hydrocarbons and water through a production well. The invention provides adding a buoyancy modifying agent to the steam to cause the hydrocarbon gases to accumulate in the well in a preferred location. The preferred location is at the top of the chamber where the gases protect the top of the chamber from being extracted to the point of breakthrough.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: December 3, 2013
    Inventor: John Nenniger
  • Patent number: 8434551
    Abstract: A solvent based gravity drainage process whereby the vertical growth rate of the chamber is restricted by placing, monitoring and managing a buoyant gas blanket at the top of the vapor chamber. The process reduces the heat loss to the overburden as well as providing a means to preserve a barrier layer of bitumen saturated reservoir sand at the top of the pay zone in reservoirs where there is limited or no confining layer present.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: May 7, 2013
    Assignee: N-Solv Corporation
    Inventors: John Nenniger, Lowy Gunnewiek
  • Publication number: 20120267097
    Abstract: There is disclosed a multi-step in situ extraction process for heavy oil reservoirs using a solvent having various steps, including, removing, from areas in contact with said heavy oil, solvent blockers to create voids and to increase an interfacial area of unextracted heavy oil contactable by said solvent and injecting solvent in vapour form into the voids to raise the reservoir pressure until sufficient solvent is present in a liquid form to fill the voids and to contact said increased interfacial area of said heavy oil. Next the reservoir is shut in for a period of time to permit said solvent to diffuse into said unextracted oil across said interfacial area from the solvent filled voids in a ripening step to create a reduced viscosity blend of solvent and oil and one or more reservoir characteristics is measured to confirm the extent of solvent dilution that has occurred of the unextracted oil in the reservoir.
    Type: Application
    Filed: December 20, 2010
    Publication date: October 25, 2012
    Applicant: N-SOLV HEAVY OIL CORPORATION
    Inventor: John Nenniger
  • Publication number: 20110073302
    Abstract: This invention is a solvent based gravity drainage process whereby the vertical growth rate of the chamber is restricted by placing, monitoring and managing a buoyant gas blanket at the top of the vapour chamber. This invention reduces the heat loss to the overburden as well as providing a means to preserve a barrier layer of bitumen saturated reservoir sand at the top of the pay zone in reservoirs where there is limited or no confining layer present.
    Type: Application
    Filed: September 25, 2009
    Publication date: March 31, 2011
    Applicant: N-SOLV CORPORATION
    Inventors: John Nenniger, Lowy Gunnewiek
  • Publication number: 20100236783
    Abstract: An in situ extraction process for the recovery of hydrocarbons from a hydrocarbon bearing formation, including the steps of injecting a solvent consisting substantially of one of the group of H2S, Ammonia or COS into the formation to mobilize the hydrocarbons for extraction by forming a mobile in situ extraction fluid; and lifting the extraction fluid containing the mobilized hydrocarbons from the underground formation to the surface. In a further aspect an extraction method for a specific reservoir is provided including the steps of: establishing a minimum desired extraction rate, based on a value for the porosity, permeability and dead oil viscosity of the in situ bitumen in the specific reservoir, determining a desired minimum operating extraction temperature determining a desirable range of operating pressures identifying solvents predicted to deliver the operating extraction temperature within the range of operating pressures, and selecting a preferred solvent to use in the process.
    Type: Application
    Filed: May 29, 2008
    Publication date: September 23, 2010
    Applicant: N-SOLV CORPORATION
    Inventors: John Nenniger, Stephen Dunn
  • Publication number: 20100163229
    Abstract: A process for recovering hydrocarbons from an in situ formation. The process includes the steps of injecting steam though an injection well into an underground extraction chamber having a hydrocarbon extraction interface, warming the hydrocarbons at the extraction interface to cause the hydrocarbons to flow downwardly by gravity drainage and to release dissolved hydrocarbon gases and moving the hydrocarbon gases from the extraction interface to improve heat transfer from said steam to said interface. The last step is to recover liquids such as hydrocarbons and water through a production well. The invention provides adding a buoyancy modifying agent to the steam to cause the hydrocarbon gases to accumulate in the well in a preferred location. The preferred location is at the top of the chamber where the gases protect the top of the chamber from being extracted to the point of breakthrough.
    Type: Application
    Filed: June 5, 2007
    Publication date: July 1, 2010
    Inventor: John Nenniger
  • Patent number: 7727766
    Abstract: There is disclosed a method of testing oil extraction processes including the steps of: 1) placing a sample to be tested in a sample holder which has a configurable temperature profile; 2) placing the sample holder in a pressure vessel; 3) increasing the pressure in the pressure vessel to simulate an over burden pressure; 4) configuring the temperature profile of the sample holder to match a desired temperature profile; 5) applying an oil extraction process to the sample; 6) measuring one or more parameters of the oil extraction process; 7) measuring the temperature of the sample to which the process is being applied; 8) configuring the sample holder to match the measured temperature profile. A device to test oil extraction processes on samples is disclosed. The device has a temperature configurable sample holder having sufficient temperature control to provide a desired heat profile to the sample.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: June 1, 2010
    Assignee: N-Solv Corporation
    Inventors: John Nenniger, Steve Conzuorgood, Lowy Gunnewiek, Bob Reid, Emil Nenniger
  • Publication number: 20100096147
    Abstract: A process for recovering hydrocarbons from an in situ formation. The process includes the steps of injecting solvent though an injection well into an underground extraction chamber having a hydrocarbon extraction interface, warming the hydrocarbons at the extraction interface to cause the hydrocarbons to flow downwardly by gravity drainage. Barrier gases naturally emerge in the chamber as a result of the extraction process and are removed from the extraction interface to improve heat transfer from said solvent to said interface. The last step is to recover liquids such as hydrocarbons and water through a production well. The invention provides a separate flow path to remove hydrocarbon gases from the chamber at a preferred location. The preferred location is near the top of the chamber where the accumulated barrier gases help to limit the heat loss and can also provide a barrier to help maintain chamber integrity and confinement.
    Type: Application
    Filed: June 18, 2007
    Publication date: April 22, 2010
    Inventors: John Nenniger, Emil Nenniger
  • Publication number: 20090211378
    Abstract: There is disclosed a method of testing oil extraction processes including the steps of: 1) placing a sample to be tested in a sample holder which has a configurable temperature profile; 2) placing the sample holder in a pressure vessel; 3) increasing the pressure in the pressure vessel to simulate an over burden pressure; 4) configuring the temperature profile of the sample holder to match a desired temperature profile; 5) applying an oil extraction process to the sample; 6) measuring one or more parameters of the oil extraction process; 7) measuring the temperature of the sample to which the process is being applied; 8) configuring the sample holder to match the measured temperature profile. A device to test oil extraction processes on samples is disclosed. The device has a temperature configurable sample holder having sufficient temperature control to provide a desired heat profile to the sample.
    Type: Application
    Filed: February 19, 2009
    Publication date: August 27, 2009
    Applicant: NENNIGER ENGINEERING INC.
    Inventors: Steve Conquorgood, Lowy Gunnewiek, Bob Reid, Emil Nenniger, John Nenniger
  • Patent number: 7514041
    Abstract: There is disclosed a method of testing oil extraction processes including the steps of: 1) placing a sample to be tested in a sample holder which has a configurable temperature profile; 2) placing the sample holder in a pressure vessel; 3) increasing the pressure in the pressure vessel to simulate an over burden pressure; 4) configuring the temperature profile of the sample holder to match a desired temperature profile; 5) applying an oil extraction process to the sample; 6) measuring one or more parameters of the oil extraction process; 7) measuring the temperature of the sample to which the process is being applied; and 8) configuring the sample holder to match the measured temperature profile. A device to test oil extraction processes on samples is also disclosed. The device has a temperature configurable sample holder having sufficient temperature control to provide a desired heat profile to the sample.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: April 7, 2009
    Assignee: N-SOLV Corporation
    Inventors: Steve Conquorgood, Lowy Gunnewiek, Bob Reid, Emil Nenniger, John Nenniger
  • Patent number: 7363973
    Abstract: A process for the recovery of hydrocarbons from a hydrocarbon bearing formation having an extraction chamber where the extraction chamber has an extraction surface. The process has the steps of heating a solvent, such as propane, and then placing the solvent into the extraction chamber at a temperature and a pressure sufficient for the solvent to be in a vapor state in the chamber and to condense on the extraction surface. The next step is to produce a liquid blend of solvent and heavy oil and then to separate the solvent from said heavy oil. Then the solvent is purified, before being re-injected into the formation again. The purification step removes less condensable fractions from the solvent to ensure a purity that is high enough to support continued heat transfer at extraction conditions. The pressure and temperature are set to levels to cause less condensable fractions to drain away with the liquid bitumen and solvent blend that is produced, thus mitigating heat transfer poisoning.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: April 29, 2008
    Inventors: John Nenniger, Emil Nenniger
  • Publication number: 20060024840
    Abstract: A method of testing oil extraction processes is shown. The method includes the steps of placing a sample to be tested in a sample holder which has a configurable temperature profile. The sample holder is then placed in a pressure vessel and the pressure in the pressure vessel is increased to simulate an over burden pressure. The temperature profile of the sample holder is then configured to match a desired temperature profile. An oil extraction process is then applied to the sample and one or more parameters of said oil extraction process is then measured. In a further step, the temperature of the sample to which the process is being applied is measured, and the sample holder is configured to match the measured temperature profile. A device to test oil extraction processes on samples is disclosed. The device has a temperature configurable sample holder having sufficient temperature control to provide a desired heat profile to said sample.
    Type: Application
    Filed: July 28, 2004
    Publication date: February 2, 2006
    Inventors: Steve Conquorgood, Lowy Gunnewiek, Bob Reid, Emil Nenniger, John Nenniger
  • Publication number: 20050145383
    Abstract: This invention relates to a process for the recovery of hydrocarbons from a hydrocarbon bearing formation having an extraction chamber where the extraction chamber has an extraction surface. The process has the steps of heating a solvent, such as propane, and then placing the solvent into the extraction chamber at a temperature and a pressure sufficient for the solvent to be in a vapor state in said chamber and to condense on said extraction surface. The next step is to produce a liquid blend of solvent and heavy oil and then to separate the solvent from said heavy oil. Then the solvent is purified, before being re-injected into the formation again. The purification step removes less condensable fractions from the solvent to ensure a purity that is high enough to support continued heat transfer at extraction conditions.
    Type: Application
    Filed: February 22, 2005
    Publication date: July 7, 2005
    Inventors: John Nenniger, Emil Nenniger
  • Patent number: 6883607
    Abstract: A process for the recovery of hydrocarbons from a hydrocarbon bearing formation having an extraction chamber where the extraction chamber has an extraction surface. The process has the steps of heating a solvent, such as propane, and then placing the solvent into the extraction chamber at a temperature and a pressure sufficient for the solvent to be in a vapor state in the chamber and to condense on the extraction surface. The next step is to produce a liquid blend of solvent and heavy oil and then to separate the solvent from said heavy oil. Then the solvent is purified, before being re-injected into the formation again. The purification step removes less condensable fractions from the solvent to ensure a purity that is high enough to support continued heat transfer at extraction conditions. The pressure and temperature are set to levels to cause less condensable fractions to drain away with the liquid bitumen and solvent blend that is produced, thus mitigating heat transfer poisoning.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: April 26, 2005
    Assignee: N-Solv Corporation
    Inventors: John Nenniger, Emil Nenniger