Patents by Inventor John Nicholas Argyropoulos

John Nicholas Argyropoulos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6310260
    Abstract: This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more products from a continuously generated reaction product fluid comprising one or more unreacted reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, one or more polar solvents and one or more nonpolar solvents by phase separation wherein (i) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1 which is a value greater than about 2.5, (ii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 30, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: John Nicholas Argyropoulos, Jeffrey Scott Kanel, Michael Leo Tulchinsky, David James Miller, Donald Lee Morrison, Paul Foley, David Robert Bryant, Ailene Gardner Phillips, Brian Michael Roesch, John Robert Briggs, Max Min Lee, John Michael Maher
  • Patent number: 6307110
    Abstract: This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more products from a continuously generated reaction product fluid comprising one or more unreacted reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, one or more nonpolar solvents and one or more polar solvents by phase separation wherein (i) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1which is a value greater than about 2.5, (ii) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 23, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: John Nicholas Argyropoulos, Jeffrey Scott Kanel, Michael Leo Tulchinsky, David James Miller, Donald Lee Morrison, Paul Foley, David Robert Bryant, Ailene Gardner Phillips, Brian Michael Roesch, John Robert Briggs, Max Min Lee, John Michael Maher
  • Patent number: 6307108
    Abstract: This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more formylester products from a reaction product fluid comprising one or more unreacted unsaturated ester reactants, a metal-organophoshorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, a nonpolar solvent and a polar solvent by phase separation wherein (i) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1 which is a value greater than about 2.5 (ii) the selectivity of the nonpolar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 23, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: John Nicholas Argyropoulos, Jeffrey Scott Kanel, Michael Leo Tulchinsky, David James Miller, Donald Lee Morrison, Paul Foley, David Robert Bryant
  • Patent number: 6303829
    Abstract: This invention relates to a process for separating one or more products from a reaction product fluid comprising a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more products, one or more nonpolar reaction solvents and one or more polar reaction solvents, wherein said process comprises (1) subjecting said reaction product fluid to fractional countercurrent extraction with at least two immiscible extraction solvents, said at least two immiscible extraction solvents comprising at least one nonpolar extraction solvent and at least one polar extraction solvent, to obtain a nonpolar phase comprising said metal-organophosphorus ligand complex catalyst, said optionally free organophosphorus ligand, said one or more nonpolar reaction solvents and said at least one nonpolar extraction solvent and a polar phase comprising said one or more products, said one or more polar reaction solvents and said at least one polar extraction solvent, and (2) recovering said polar
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 16, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Jeffrey Scott Kanel, John Nicholas Argyropoulos, Ailene Gardner Phillips, Brian Michael Roesch, John Robert Briggs, Max Min Lee, John Michael Maher, David Robert Bryant
  • Patent number: 6303830
    Abstract: This invention relates to a process for separating one or more organophosphorus ligand degradation products, one or more reaction byproducts and one or more formylester products from a reaction product fluid comprising one or more unreacted unsaturated ester reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more organophosphorus ligand degradation products, said one or more reaction byproducts, said one or more products, a polar solvent and a nonpolar solvent by phase separation wherein(i) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more products is expressed by a partition coefficient ratio Ef1 which is a value greater than about 2.5, (ii) the selectivity of the polar phase for the organophosphorus ligand with respect to the one or more organophosphorus ligand degradation products is expressed by a partition coefficient ratio Ef2 which is a value greater than about 2.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: October 16, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: John Nicholas Argyropoulos, Jeffrey Scott Kanel, Michael Leo Tulchinsky, David James Miller, Donald Lee Morrison, Paul Foley, David Robert Bryant
  • Patent number: 6294700
    Abstract: This invention relates to a process for separating one or more products from a reaction product fluid comprising a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, said one or more products, one or more polar reaction solvents and one or more nonpolar reaction solvents, wherein said process comprises (1) subjecting said reaction product fluid to fractional countercurrent extraction with at least two immiscible extraction solvents, said at least two immiscible extraction solvents comprising at least one polar extraction solvent and at least one nonpolar extraction solvent, to obtain a polar phase comprising said metal-organophosphorus ligand complex catalyst, said optionally free organophosphorus ligand, said one or more polar reaction solvents and said at least one polar extraction solvent and a nonpolar phase comprising said one or more products, said one or more nonpolar reaction solvents and said at least one nonpolar extraction solvent, and (2) recovering said nonpo
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: September 25, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Jeffrey Scott Kanel, John Nicholas Argyropoulos, Ailene Gardner Phillips, Brian Michael Roesch, John Robert Briggs, Max Min Lee, John Michael Maher, David Robert Bryant
  • Patent number: 6252121
    Abstract: This invention relates to a process for separating one or more cyclic products from a reaction product fluid comprising one or more cyclic reactants, a metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand, a non-polar solvent and said one or more cyclic products, wherein said process comprises: (1) reacting said one or more cyclic reactants in the presence of said metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand and non-polar solvent to form a multiphase reaction product fluid; and (2) separating said multiphase reaction product fluid to obtain a non-polar phase comprising said one or more cyclic reactants, metal-organophosphorus ligand complex catalyst, optionally free organophosphorus ligand and non-polar solvent and a polar phase comprising said one or more cyclic products.
    Type: Grant
    Filed: July 27, 1999
    Date of Patent: June 26, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: John Nicholas Argyropoulos, David Robert Bryant, Michael Leo Tulchinsky, Jeffrey Scott Kanel, Paul Foley, Barry Brent Fish
  • Patent number: 6124226
    Abstract: This invention relates to methods for spraying liquid compositions containing volatile solvent by using compressed fluids, such as carbon dioxide or ethane, to form solid particulates, coating powders, and catalyst materials, which can be produced with narrow particle size distributions and can be sprayed at higher solids levels, in ambient air or with heated air applied to just the spray instead of a spray chamber. Novel catalyst supports can be produced having a beneficial morphology such as for olefin catalysis. Drier water-borne coatings can be applied to substrates by using compressed fluids to spray water-borne coating compositions having conventional water levels, thereby reducing runs and sags and shortening dry times.
    Type: Grant
    Filed: April 19, 1999
    Date of Patent: September 26, 2000
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Kenneth Andrew Nielsen, John Nicholas Argyropoulos, Burkhard Eric Wagner
  • Patent number: 6106742
    Abstract: This invention pertains to novel higher solids conductive coating compositions which can be applied by spray and other atomization methods. More particularly, it pertains to novel higher solids conductive coating compositions capable of application by electrostatic atomization methods. While there are many applications in which conductive coatings are useful, the invention is particularly useful for the manufacture of adhesion promoting primer compositions which have higher solids and can be applied by electrostatic atomization methods. The key components of the present invention are:(i) a conductive pigment,(ii) a non-conductive polymeric binder, and(iii) a solvent selected for its ability:(a) to form a stable non-conductive dispersion of a conductive pigment when subjected to an electrostatic potential of 20000+ volts,(b) to provide for a higher solids liquid coatings composition thereby reducing the volatile organic emissions (VOC) during application.
    Type: Grant
    Filed: April 9, 1999
    Date of Patent: August 22, 2000
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: John Nicholas Argyropoulos, Richard Hill Bailey, Kenneth Look Hoy, Gerald Robert Gilliam, Kevin Joseph Riggs
  • Patent number: 6106896
    Abstract: This invention relates to methods for spraying liquid compositions containing volatile solvent by using compressed fluids, such as carbon dioxide or ethane, to form solid particulates, coating powders, and catalyst materials, which can be produced with narrow particle size distributions and can be sprayed at higher solids levels, in ambient air or with heated air applied to just the spray instead of a spray chamber. Novel catalyst supports can be produced having a beneficial morphology such as for olefin catalysis. Drier water-born coatings can be applied to substrates by using compressed fluids to spray water-born coating compositions having conventional water levels, thereby reducing runs and sags and shortening dry times.
    Type: Grant
    Filed: April 19, 1999
    Date of Patent: August 22, 2000
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Kenneth Andrew Nielsen, John Nicholas Argyropoulos, Burkhard Eric Wagner
  • Patent number: 5716558
    Abstract: This invention relates to methods for spraying liquid compositions containing volatile solvent by using compressed fluids, such as carbon dioxide or ethane, to form solid particulates, coating powders, and catalyst materials, which can be produced with narrow particle size distributions and can be sprayed at higher solids levels, in ambient air or with heated air applied to just the spray instead of a spray chamber. Novel catalyst supports can be produced having a beneficial morphology such as for olefin catalysis. Drier water-borne coatings can be applied to substrates by using compressed fluids to spray water-borne coating compositions having conventional water levels, thereby reducing runs and sags and shortening dry times.
    Type: Grant
    Filed: November 14, 1994
    Date of Patent: February 10, 1998
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Kenneth Andrew Nielsen, John Nicholas Argyropoulos, Burkhard Eric Wagner