Patents by Inventor John Niemczuk

John Niemczuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10837274
    Abstract: A sensor arrangement using an optical fiber and methodologies for performing an analysis of a subterranean formation, such as a subterranean formation containing a hydrocarbon based fluid. The sensor arrangement may be used to measure one or more physical parameters, such as temperature and/or pressure, at a multiplicity of locations in the subterranean reservoir. The sensor arrangement may comprise a sensor array comprising an elongated outer casing for insertion in the subterranean formation and into a fluid in the subterranean formation. The sensor array may comprise an optical fiber defining an optical path that links one or more temperature sensors and one or more pressure sensors and transports measurement data generated by the temperature and pressure sensors. A data processing system may be connected to the sensor array to receive measurements from the sensor array and to compute one or more values of a property of an extraction installation operating on the subterranean formation.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: November 17, 2020
    Assignee: WEATHERFORD CANADA LTD.
    Inventors: Andre R. Vincelette, Jason Scott Kiddy, John Niemczuk, Christopher S. Baldwin, Paul Lefebvre
  • Patent number: 10370956
    Abstract: Methods, apparatus, and systems are provided for sensing pressure. One example apparatus includes a housing having a first port, a chamber disposed in the housing and having a second port, wherein the second port is coupled to the first port such that a volume inside the chamber is in fluid communication with an environment external to the housing, and a pressure sensor assembly at least partially disposed in the chamber and configured to sense a pressure of a fluid in the chamber. The chamber may be mechanically coupled to the housing via a portion of an exterior surface of the chamber such that a pressure response of the pressure sensor assembly is independent of extraneous loading on the housing.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: August 6, 2019
    Assignee: Weatherford Technology Holdings, LLC
    Inventors: Hongbo Li, Arthur Chu, Patrick Schmahl, John Niemczuk
  • Publication number: 20190226321
    Abstract: A sensor arrangement using an optical fiber and methodologies for performing an analysis of a subterranean formation, such as a subterranean formation containing a hydrocarbon based fluid. The sensor arrangement may be used to measure one or more physical parameters, such as temperature and/or pressure, at a multiplicity of locations in the subterranean reservoir. The sensor arrangement may comprise a sensor array comprising an elongated outer casing for insertion in the subterranean formation and into a fluid in the subterranean formation. The sensor array may comprise an optical fiber defining an optical path that links one or more temperature sensors and one or more pressure sensors and transports measurement data generated by the temperature and pressure sensors. A data processing system may be connected to the sensor array to receive measurements from the sensor array and to compute one or more values of a property of an extraction installation operating on the subterranean formation.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Inventors: Andre R. VINCELETTE, Jason Scott KIDDY, John NIEMCZUK, Christopher S. BALDWIN, Paul LEFEBVRE
  • Publication number: 20170241257
    Abstract: Methods, apparatus, and systems are provided for sensing pressure. One example apparatus includes a housing having a first port, a chamber disposed in the housing and having a second port, wherein the second port is coupled to the first port such that a volume inside the chamber is in fluid communication with an environment external to the housing, and a pressure sensor assembly at least partially disposed in the chamber and configured to sense a pressure of a fluid in the chamber. The chamber may be mechanically coupled to the housing via a portion of an exterior surface of the chamber such that a pressure response of the pressure sensor assembly is independent of extraneous loading on the housing.
    Type: Application
    Filed: February 18, 2016
    Publication date: August 24, 2017
    Inventors: Hongbo LI, Arthur CHU, Patrick SCHMAHL, John NIEMCZUK
  • Publication number: 20090116000
    Abstract: A fiber optic shape determination system having at least one optical fiber for placement within or along an elongated structure. The optical fiber defines an optical path for conveying an optical signal. The optical path manifests an interaction with the optical signal wherein the interaction occurs in a continuous fashion during the propagation of the optical signal along the optical path and produces a measurable response, the response conveying information about strain imparted to the optical fiber and a location along the optical fiber at which the strain occurs. The shape determination system also has a measurement component coupled to the optical fiber to sense the response and for determining the strain applied at different locations along the fiber and for deriving a shape of optic fiber, accordingly.
    Type: Application
    Filed: October 20, 2008
    Publication date: May 7, 2009
    Inventors: JASON KIDDY, Chris Baldwin, John Niemczuk