Patents by Inventor John P. Ackerman

John P. Ackerman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7638026
    Abstract: This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO2, is added to a solution of UCl4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: December 29, 2009
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: James L. Willit, John P. Ackerman, Mark A. Williamson
  • Patent number: 7410561
    Abstract: A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: August 12, 2008
    Assignee: UChicago Argonne, LLC
    Inventors: Dennis W. Dees, John P. Ackerman
  • Patent number: 6911134
    Abstract: A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: June 28, 2005
    Assignee: The University of Chicago
    Inventors: Dennis W. Dees, John P. Ackerman
  • Publication number: 20040045835
    Abstract: A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.
    Type: Application
    Filed: September 6, 2002
    Publication date: March 11, 2004
    Applicant: The University of Chicago
    Inventors: Dennis W. Dees, John P. Ackerman
  • Patent number: 5336450
    Abstract: The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.
    Type: Grant
    Filed: December 31, 1992
    Date of Patent: August 9, 1994
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John P. Ackerman, Terry R. Johnson
  • Patent number: 5160367
    Abstract: A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel.
    Type: Grant
    Filed: October 3, 1991
    Date of Patent: November 3, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: R. Dean Pierce, John P. Ackerman, James E. Battles, Terry R. Johnson, William E. Miller
  • Patent number: 5147616
    Abstract: A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a U-Fe alloy containing not less than about 84% by weight uranium at a temperature in the range of from about 800.degree. C. to about 850.degree. C. to produce additional uranium metal which dissolves in the U-Fe alloy raising the uranium concentration and having transuranium actinide metals and rare earth fission product metals and the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel.
    Type: Grant
    Filed: October 3, 1991
    Date of Patent: September 15, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John P. Ackerman, James E. Battles, Terry R. Johnson, William E. Miller, R. Dean Pierce
  • Patent number: 5141723
    Abstract: A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein.
    Type: Grant
    Filed: October 3, 1991
    Date of Patent: August 25, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: William E. Miller, John P. Ackerman, James E. Battles, Terry R. Johnson, R. Dean Pierce
  • Patent number: 5096545
    Abstract: A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride.
    Type: Grant
    Filed: May 21, 1991
    Date of Patent: March 17, 1992
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: John P. Ackerman
  • Patent number: 4880506
    Abstract: An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.
    Type: Grant
    Filed: November 5, 1987
    Date of Patent: November 14, 1989
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: John P. Ackerman, William E. Miller
  • Patent number: 4814046
    Abstract: A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).
    Type: Grant
    Filed: July 12, 1988
    Date of Patent: March 21, 1989
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Terry R. Johnson, John P. Ackerman, Zygmunt Tomczuk, Donald F. Fischer
  • Patent number: 4499663
    Abstract: A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002-0.01 cm thick; and the cathode and anode materials are only 0.002-0.05 cm thick.
    Type: Grant
    Filed: October 12, 1983
    Date of Patent: February 19, 1985
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Stanley A. Zwick, John P. Ackerman
  • Patent number: 4476198
    Abstract: A solid oxide fuel cell for electrochemically combining fuel and oxidant for generating galvanic output, wherein the cell core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support. Instead, the core is monolithic, where each electrolyte wall consists of thin layers of cathode and anode materials sandwiching a thin layer of electrolyte material therebetween, and each interconnect wall consists of thin layers of the cathode and anode materials sandwiching a thin layer of interconnect material therebetween. The electrolyte walls are arranged and backfolded between adjacent interconnect walls operable to define a plurality of core passageways alternately arranged where the inside faces thereof have only the anode material or only the cathode material exposed.
    Type: Grant
    Filed: October 12, 1983
    Date of Patent: October 9, 1984
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John P. Ackerman, John E. Young
  • Patent number: 4115632
    Abstract: An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.
    Type: Grant
    Filed: May 5, 1977
    Date of Patent: September 19, 1978
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Kimio Kinoshita, John P. Ackerman