Patents by Inventor John P. Beale

John P. Beale has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11872163
    Abstract: A magnetic positioning system and related method for automated or assisted eye-docking in ophthalmic surgery. The system includes a magnetic field sensing system on a laser head and a magnet on a patient interface to be mounted on the patient's eye. The magnetic field sensing system includes four magnetic field sensors located on a horizontal plane for detecting the magnetic field of the magnet, where one pair of sensors are located along the X direction at equal distances from the optical axis of the laser head and another pair are located along the Y direction at equal distances from the optical axis. Based on relative magnitudes of the magnetic field detected by each pair of sensors, the magnetic field sensing system determines whether the patient interface is centered on the optical axis. The system controls the laser head to move toward the patient interface until the latter is centered on the optical axis.
    Type: Grant
    Filed: December 22, 2021
    Date of Patent: January 16, 2024
    Assignee: AMO Development, LLC
    Inventors: Harvey I. Liu, John P. Beale
  • Patent number: 11865044
    Abstract: An RF (radio frequency) positioning system and related method for automated or assisted eye-docking in ophthalmic surgery. The system includes an RF detector system on a laser head and an RFID tag on a patient interface to be mounted on the patient's eye. The detector system includes four RF antennas located on a horizontal plane for detecting RF signals from the RFID tag, where one pair of antennas are located along the X direction at equal distances from the optical axis of the laser head and another pair are located along the Y direction at equal distances from the optical axis. Based on relative strengths and phase difference of the RF signals detected by each pair of antennas, the RF detector system determines whether the patient interface is centered on the optical axis. The RF detector system controls the laser head to move toward the patient interface until the latter is centered on the optical axis.
    Type: Grant
    Filed: July 6, 2022
    Date of Patent: January 9, 2024
    Assignee: AMO Development, LLC
    Inventors: Harvey I. Liu, John P. Beale, Jose L. Garcia
  • Publication number: 20220339027
    Abstract: An RF (radio frequency) positioning system and related method for automated or assisted eye-docking in ophthalmic surgery. The system includes an RF detector system on a laser head and an RFID tag on a patient interface to be mounted on the patient's eye. The detector system includes four RF antennas located on a horizontal plane for detecting RF signals from the RFID tag, where one pair of antennas are located along the X direction at equal distances from the optical axis of the laser head and another pair are located along the Y direction at equal distances from the optical axis. Based on relative strengths and phase difference of the RF signals detected by each pair of antennas, the RF detector system determines whether the patient interface is centered on the optical axis. The RF detector system controls the laser head to move toward the patient interface until the latter is centered on the optical axis.
    Type: Application
    Filed: July 6, 2022
    Publication date: October 27, 2022
    Inventors: Harvey I. Liu, John P. Beale, Jose L. Garcia
  • Patent number: 11406448
    Abstract: A hand-held device for providing a dermatological treatment by scanning laser beams to form a pattern of treatment spots on the skin includes a laser source configured to generate an input laser beam, an automated scanning system, and a treatment spot control system. The automated scanning system includes a rotating multi-sector scanning element configured to repeatedly scan the input laser beam, each scan of the input laser beam providing an array of output laser beams corresponding to the multiple sectors of the scanning element and forming a scanned row of treatment spots on the skin. The rotating multi-sector scanning element is configured such that the each sector provides a constant-angular-direction output laser beam as that sector rotates through the input laser beam. The treatment spots of each scanned row are spaced apart from each other by areas of non-irradiated skin.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: August 9, 2022
    Assignee: CHANNEL INVESTMENTS, LLC
    Inventors: David Youngquist, Harvey I-Heng Liu, Jay M. Vahlensieck, Patrick Reichert, John P. Beale, Tobin Island
  • Patent number: 11382793
    Abstract: An RF (radio frequency) positioning system and related method for automated or assisted eye-docking in ophthalmic surgery. The system includes an RF detector system on a laser head and an RFID tag on a patient interface to be mounted on the patient's eye. The detector system includes four RF antennas located on a horizontal plane for detecting RF signals from the RFID tag, where one pair of antennas are located along the X direction at equal distances from the optical axis of the laser head and another pair are located along the Y direction at equal distances from the optical axis. Based on relative strengths and phase difference of the RF signals detected by each pair of antennas, the RF detector system determines whether the patient interface is centered on the optical axis. The RF detector system controls the laser head to move toward the patient interface until the latter is centered on the optical axis.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: July 12, 2022
    Assignee: AMO Development, LLC
    Inventors: Harvey I. Liu, John P. Beale, Jose L. Garcia
  • Publication number: 20220110790
    Abstract: A magnetic positioning system and related method for automated or assisted eye-docking in ophthalmic surgery. The system includes a magnetic field sensing system on a laser head and a magnet on a patient interface to be mounted on the patient's eye. The magnetic field sensing system includes four magnetic field sensors located on a horizontal plane for detecting the magnetic field of the magnet, where one pair of sensors are located along the X direction at equal distances from the optical axis of the laser head and another pair are located along the Y direction at equal distances from the optical axis. Based on relative magnitudes of the magnetic field detected by each pair of sensors, the magnetic field sensing system determines whether the patient interface is centered on the optical axis. The system controls the laser head to move toward the patient interface until the latter is centered on the optical axis.
    Type: Application
    Filed: December 22, 2021
    Publication date: April 14, 2022
    Inventors: Harvey I. Liu, John P. Beale
  • Patent number: 11213428
    Abstract: A magnetic positioning system and related method for automated or assisted eye-docking in ophthalmic surgery. The system includes a magnetic field sensing system on a laser head and a magnet on a patient interface to be mounted on the patient's eye. The magnetic field sensing system includes four magnetic field sensors located on a horizontal plane for detecting the magnetic field of the magnet, where one pair of sensors are located along the X direction at equal distances from the optical axis of the laser head and another pair are located along the Y direction at equal distances from the optical axis. Based on relative magnitudes of the magnetic field detected by each pair of sensors, the magnetic field sensing system determines whether the patient interface is centered on the optical axis. The system controls the laser head to move toward the patient interface until the latter is centered on the optical axis.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: January 4, 2022
    Assignee: AMO Development, LLC
    Inventors: Harvey I. Liu, John P. Beale
  • Publication number: 20200197219
    Abstract: An RF (radio frequency) positioning system and related method for automated or assisted eye-docking in ophthalmic surgery. The system includes an RF detector system on a laser head and an RFID tag on a patient interface to be mounted on the patient's eye. The detector system includes four RF antennas located on a horizontal plane for detecting RF signals from the RFID tag, where one pair of antennas are located along the X direction at equal distances from the optical axis of the laser head and another pair are located along the Y direction at equal distances from the optical axis. Based on relative strengths and phase difference of the RF signals detected by each pair of antennas, the RF detector system determines whether the patient interface is centered on the optical axis. The RF detector system controls the laser head to move toward the patient interface until the latter is centered on the optical axis.
    Type: Application
    Filed: February 27, 2020
    Publication date: June 25, 2020
    Inventors: Harvey I. Liu, John P. Beale, Jose L. Garcia
  • Publication number: 20200179165
    Abstract: A magnetic positioning system and related method for automated or assisted eye-docking in ophthalmic surgery. The system includes a magnetic field sensing system on a laser head and a magnet on a patient interface to be mounted on the patient's eye. The magnetic field sensing system includes four magnetic field sensors located on a horizontal plane for detecting the magnetic field of the magnet, where one pair of sensors are located along the X direction at equal distances from the optical axis of the laser head and another pair are located along the Y direction at equal distances from the optical axis. Based on relative magnitudes of the magnetic field detected by each pair of sensors, the magnetic field sensing system determines whether the patient interface is centered on the optical axis. The system controls the laser head to move toward the patient interface until the latter is centered on the optical axis.
    Type: Application
    Filed: February 14, 2020
    Publication date: June 11, 2020
    Inventors: Harvey I. Liu, John P. Beale
  • Patent number: 10575988
    Abstract: An RF (radio frequency) positioning system and related method for automated or assisted eye-docking in ophthalmic surgery. The system includes an RF detector system on a laser head and an RFID tag on a patient interface to be mounted on the patient's eye. The detector system includes four RF antennas located on a horizontal plane for detecting RF signals from the RFID tag, where one pair of antennas are located along the X direction at equal distances from the optical axis of the laser head and another pair are located along the Y direction at equal distances from the optical axis. Based on relative strengths and phase difference of the RF signals detected by each pair of antennas, the RF detector system determines whether the patient interface is centered on the optical axis. The RF detector system controls the laser head to move toward the patient interface until the latter is centered on the optical axis.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: March 3, 2020
    Assignee: AMO DEVELOPMENT, LLC
    Inventors: Harvey I. Liu, John P. Beale, Jose L. Garcia
  • Patent number: 10568765
    Abstract: A magnetic positioning system and related method for automated or assisted eye-docking in ophthalmic surgery. The system includes a magnetic field sensing system on a laser head and a magnet on a patient interface to be mounted on the patient's eye. The magnetic field sensing system includes four magnetic field sensors located on a horizontal plane for detecting the magnetic field of the magnet, where one pair of sensors are located along the X direction at equal distances from the optical axis of the laser head and another pair are located along the Y direction at equal distances from the optical axis. Based on relative magnitudes of the magnetic field detected by each pair of sensors, the magnetic field sensing system determines whether the patient interface is centered on the optical axis. The system controls the laser head to move toward the patient interface until the latter is centered on the optical axis.
    Type: Grant
    Filed: October 17, 2017
    Date of Patent: February 25, 2020
    Assignee: AMO DEVELOPMENT, LLC
    Inventors: Harvey I. Liu, John P. Beale
  • Publication number: 20190357976
    Abstract: A hand-held device for providing a dermatological treatment by scanning laser beams to form a pattern of treatment spots on the skin includes a laser source configured to generate an input laser beam, an automated scanning system, and a treatment spot control system. The automated scanning system includes a rotating multi-sector scanning element configured to repeatedly scan the input laser beam, each scan of the input laser beam providing an array of output laser beams corresponding to the multiple sectors of the scanning element and forming a scanned row of treatment spots on the skin. The rotating multi-sector scanning element is configured such that the each sector provides a constant-angular-direction output laser beam as that sector rotates through the input laser beam. The treatment spots of each scanned row are spaced apart from each other by areas of non-irradiated skin.
    Type: Application
    Filed: August 12, 2019
    Publication date: November 28, 2019
    Applicant: CHANNEL INVESTMENTS, LLC
    Inventors: David Youngquist, Harvey I-Heng Liu, Jay M. Vahlensieck, Patrick Reichert, John P. Beale, Tobin Island
  • Patent number: 10471274
    Abstract: A battery-powered laser-based dermatological treatment device may include a laser unit comprising at least one laser diode, a battery unit, at least one sensor configured to generate sensor signals, and a laser drive control system including a laser drive circuit comprising the laser unit, the battery unit, a first switch (e.g., a first FET), and a second switch (e.g., a second FET), wherein the laser unit is arranged in series between the first switch and the second switch, and control electronics configured to control the first switch based at least on sensor signals from the at least one sensor, and control the second switch using pulse width modulation (PWM), thereby delivering current from the battery unit to the laser unit with a PWM current waveform. The laser drive circuit may also include a snubber circuit configured to prevent voltage spikes upon the second switch being turned off.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: November 12, 2019
    Assignee: CHANNEL INVESTMENTS, LLC
    Inventors: Harvey I-Heng Liu, John P. Beale
  • Publication number: 20190110920
    Abstract: An RF (radio frequency) positioning system and related method for automated or assisted eye-docking in ophthalmic surgery. The system includes an RF detector system on a laser head and an RFID tag on a patient interface to be mounted on the patient's eye. The detector system includes four RF antennas located on a horizontal plane for detecting RF signals from the RFID tag, where one pair of antennas are located along the X direction at equal distances from the optical axis of the laser head and another pair are located along the Y direction at equal distances from the optical axis. Based on relative strengths and phase difference of the RF signals detected by each pair of antennas, the RF detector system determines whether the patient interface is centered on the optical axis. The RF detector system controls the laser head to move toward the patient interface until the latter is centered on the optical axis.
    Type: Application
    Filed: October 12, 2017
    Publication date: April 18, 2019
    Inventors: Harvey I. Liu, John P. Beale, Jose L. Garcia
  • Publication number: 20190110923
    Abstract: A magnetic positioning system and related method for automated or assisted eye-docking in ophthalmic surgery. The system includes a magnetic field sensing system on a laser head and a magnet on a patient interface to be mounted on the patient's eye. The magnetic field sensing system includes four magnetic field sensors located on a horizontal plane for detecting the magnetic field of the magnet, where one pair of sensors are located along the X direction at equal distances from the optical axis of the laser head and another pair are located along the Y direction at equal distances from the optical axis. Based on relative magnitudes of the magnetic field detected by each pair of sensors, the magnetic field sensing system determines whether the patient interface is centered on the optical axis. The system controls the laser head to move toward the patient interface until the latter is centered on the optical axis.
    Type: Application
    Filed: October 17, 2017
    Publication date: April 18, 2019
    Inventors: Harvey I. Liu, John P. Beale
  • Patent number: 10045820
    Abstract: A dermatological treatment and analysis system includes a handheld treatment device having a handheld body, a treatment radiation source that delivers a dermatological treatment to the skin, and skin sensor(s) configured to generate signals indicative of one or more skin properties. A wireless transmitter is integrated in the handheld treatment device or in a docking/charging station that receives the handheld treatment device. The wireless transmitter is configured to receive skin-related data comprising the signals from the at least one skin sensor and/or information derived from such signals, and to wirelessly transmit the received skin-related data for analysis of the skin-related data by a remote data analysis system, which may analyze the received skin-related data to generate skin analysis data, and communicate the skin analysis data as feedback to the user of the handheld treatment device, e.g., via a website or application hosted on an internet-connected device of the user.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: August 14, 2018
    Assignee: CHANNEL INVESTMENTS, LLC
    Inventors: David Youngquist, Tobin C. Island, Harvey I-Heng Liu, John P. Beale
  • Patent number: 9414888
    Abstract: A hand-held device for providing laser-based dermatological treatments includes a laser beam source supported in a device body, an automated scanning system, and control electronics. The automated scanning system is configured to receive an input beam generated by the laser beam source and scan the input beam to provide a series of output beams for delivery to the skin via an application end of the device to form a pattern of treatment spots on the skin. The application end is configured for movement across the skin during a treatment session. The control electronics control the laser beam source and/or the automated scanning system to deliver the scanned output beams to the skin at a radiation intensity sufficient to provide an effective dermatological treatment, and wherein the scanned output beams delivered from the application end of the device meet the Class 1M or better eye safety classification per the IEC 60825-1.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: August 16, 2016
    Assignee: TRIA BEAUTY, INC.
    Inventors: Harvey I-Heng Liu, John P. Beale
  • Patent number: 9308391
    Abstract: A self-contained, hand-held device for providing a dermatological treatment may include a device body configured to be handheld by a user, a radiation source including a beam source configured to generate an energy beam, an application end configured to be manually moved across the surface of the skin, a sensor configured to generate signals based on an interaction with the skin, and electronics configured to automatically identify a series of intrinsic skin features based on the sensor signals, and control at least one operational parameter of the radiation source based at least on the identification of such skin features.
    Type: Grant
    Filed: September 2, 2013
    Date of Patent: April 12, 2016
    Assignee: TRIA BEAUTY, INC.
    Inventors: Harvey I-Heng Liu, Tobin C. Island, John P. Beale, David Youngquist, Jay M. Vahlensieck, Mark V. Weckwerth
  • Patent number: 9220915
    Abstract: A self-contained, hand-held device for providing a dermatological treatment includes a handheld device body, a radiation source supported in the device body, an automated scanning system, an application end, and a displacement control system. The automated scanning system is configured to receive an input beam generated by the radiation source and scan the received input beam to provide a series of output beams for delivery to the skin via the application end of the device to form a pattern of treatment spots on the skin. The application end is configured to be manually moved across the surface of the skin during a treatment session. The displacement control system includes a displacement sensor configured to determine a displacement of the device relative to the skin, and electronics configured to control at least one operational parameter of the device based on the determined displacement of the device relative to the skin.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: December 29, 2015
    Assignee: TRIA BEAUTY, INC.
    Inventors: Harvey I-Heng Liu, John P. Beale
  • Publication number: 20150230863
    Abstract: A dermatological treatment and analysis system includes a handheld treatment device having a handheld body, a treatment radiation source that delivers a dermatological treatment to the skin, and skin sensor(s) configured to generate signals indicative of one or more skin properties. A wireless transmitter is integrated in the handheld treatment device or in a docking/charging station that receives the handheld treatment device. The wireless transmitter is configured to receive skin-related data comprising the signals from the at least one skin sensor and/or information derived from such signals, and to wirelessly transmit the received skin-related data for analysis of the skin-related data by a remote data analysis system, which may analyze the received skin-related data to generate skin analysis data, and communicate the skin analysis data as feedback to the user of the handheld treatment device, e.g., via a website or application hosted on an internet-connected device of the user.
    Type: Application
    Filed: February 18, 2015
    Publication date: August 20, 2015
    Applicant: TRIA BEAUTY, INC.
    Inventors: David Youngquist, Tobin C. Island, Harvey I-Heng Liu, John P. Beale