Patents by Inventor John P. Foster
John P. Foster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210329914Abstract: Pest-repellent pallet slip sheets for preventing or reducing rodent or pest damage to goods placed on pallets or other locations. The pest-repellent pallet slip sheets generally include slip sheets designed for placement on the top portion of a pallet, such that the slip sheet covers substantially the entire pallet. The slip sheets may be treated with repellent substance all over, randomly, or in a pattern such that a specific portion, or all, of the slip sheet is treated with the pest-repellent substance. The pattern may be produced, for example, by feeding slip sheet material past an application device at a given rate of speed, and then intermittently interrupting the application of the pest-repellent substance if an intermittent pattern is desired. A colored dye may be added to the pest-repellent substance to create a visible indication of a pattern or treated area.Type: ApplicationFiled: July 9, 2021Publication date: October 28, 2021Inventors: Kari G. Warberg Block, John P. Foster
-
Patent number: 11058109Abstract: Pest-repellent pallet slip sheets for preventing or reducing rodent or pest damage to goods placed on pallets or other locations. The pest-repellent pallet slip sheets generally include slip sheets designed for placement on the top portion of a pallet, such that the slip sheet covers substantially the entire pallet. The slip sheets may be treated with repellent substance all over, randomly, or in a pattern such that a specific portion, or all, of the slip sheet is treated with the pest-repellent substance. The pattern may be produced, for example, by feeding slip sheet material past an application device at a given rate of speed, and then intermittently interrupting the application of the pest-repellent substance if an intermittent pattern is desired. A colored dye may be added to the pest-repellent substance to create a visible indication of a pattern or treated area.Type: GrantFiled: February 7, 2020Date of Patent: July 13, 2021Assignee: EarthKind, LLCInventors: Kari G. Warberg Block, John P. Foster
-
Patent number: 10221475Abstract: The invention relates to zirconium-based alloys and articles produced therefrom, such as tubing or strips, which have at least one of excellent corrosion resistance to water or steam and creep resistance at elevated temperatures in a nuclear reactor. The alloys include from about 0.2 to 1.5 weight percent niobium, from about 0.01 to 0.6 weight percent iron, from about 0.0 to 0.8 weight percent tin, from about 0.0 to 0.5 weight percent chromium, from about 0.0 to 0.3 weight percent copper, from about 0.0 to 0.3 weight percent vanadium, and from about 0.0 to 0.1 weight percent nickel with the balance at least 97 weight percent zirconium, including impurities. Further, the articles are formed by processes that include final heat treatment of (i) SRA or PRXA (0-33% RXA), or (ii) RXA or PRXA (80-100% RXA).Type: GrantFiled: July 6, 2015Date of Patent: March 5, 2019Assignee: Westinghouse Electric Company LLCInventors: John P. Foster, Robert J. Comstock, Andrew Atwood, Guirong Pan, Anand Garde, Mats Dahlback, Jonna Partezana Mundorff, Andrew J. Mueller
-
Patent number: 9725791Abstract: Articles, such as tubing or strips, which have excellent corrosion resistance to water or steam at elevated temperatures, are produced from alloys having 0.2 to 1.5 weight percent niobium, 0.01 to 0.6 weight percent iron, and optionally additional alloy elements selected from the group consisting of tin, chromium, copper, vanadium, and nickel with the balance at least 97 weight percent zirconium, including impurities, where a necessary final heat treatment includes one of i) a SRA or PRXA (15-20% RXA) final heat treatment, or ii) a PRXA (80-95% RXA) or RXA final heat treatment.Type: GrantFiled: June 22, 2015Date of Patent: August 8, 2017Assignee: Westinghouse Electric Company LLCInventors: John P. Foster, Robert J. Comstock, Andrew Atwood, Guirong Pan, Anand Garde, Mats Dahlback, Jonna Partezana Mundorff, Andrew J. Mueller
-
Patent number: 9284629Abstract: Articles, such as tubing or strips, which have excellent corrosion resistance to water or steam at elevated temperatures, are produced from alloys having 0.2 to 1.5 weight percent niobium, 0.01 to 0.6 weight percent iron, and optionally additional alloy elements selected from the group consisting of tin, chromium, copper, vanadium, and nickel with the balance at least 97 weight percent zirconium, including impurities, where a necessary final heat treatment includes one of i) a SRA or PRXA (15-20% RXA) final heat treatment, or ii) a PRXA (80-95% RXA) or RXA final heat treatment.Type: GrantFiled: June 16, 2011Date of Patent: March 15, 2016Assignee: Westinghouse Electric Company LLCInventors: John P. Foster, David Colburn, Robert Comstock, Terrence Cook, Mats Dahlback, Anand Garde, Pascal Jourdain, Ronald Kesterson, Michael McClarren, Dianna Lynn Svec Nuhfer, Guirong Pan, Jonna Partezana Mundorff, Hsiang Ken Yueh, James A. Boshers, Penney File, Bethany Boshers
-
Publication number: 20150337425Abstract: Articles, such as tubing or strips, which have excellent corrosion resistance to water or steam at elevated temperatures, are produced from alloys having 0.2 to 1.5 weight percent niobium, 0.01 to 0.6 weight percent iron, and optionally additional alloy elements selected from the group consisting of tin, chromium, copper, vanadium, and nickel with the balance at least 97 weight percent zirconium, including impurities, where a necessary final heat treatment includes one of i) a SRA or PRXA (15-20% RXA) final heat treatment, or ii) a PRXA (80-95% RXA) or RXA final heat treatment.Type: ApplicationFiled: June 22, 2015Publication date: November 26, 2015Applicant: WESTINGHOUSE ELECTRIC COMPANY, LLC.Inventors: JOHN P. FOSTER, ROBERT J. COMSTOCK, ANDREW R. ATWOOD, GUIRONG PAN, ANAND GARDE, MATS DAHLBACK, JONNA PARTEZANA MUNDORFF, ANDREW J. MUELLER
-
Publication number: 20150307976Abstract: The invention relates to zirconium-based alloys and articles produced therefrom, such as tubing or strips, which have at least one of excellent corrosion resistance to water or steam and creep resistance at elevated temperatures in a nuclear reactor. The alloys include from about 0.2 to 1.5 weight percent niobium, from about 0.01 to 0.6 weight percent iron, from about 0.0 to 0.8 weight percent tin, from about 0.0 to 0.5 weight percent chromium, from about 0.0 to 0.3 weight percent copper, from about 0,0 to 0.3 weight percent vanadium, and from about 0.0 to 0.1 weight percent nickel with the balance at least 97 weight percent zirconium, including impurities. Further, the articles are formed by processes that include final heat treatment of (i) SRA or PRXA (0-33% RXA), or (ii) RXA or PRXA (80-100% RXA).Type: ApplicationFiled: July 6, 2015Publication date: October 29, 2015Applicant: WESTINGHOUSE ELECTRIC COMPANY, LLC.Inventors: JOHN P. FOSTER, ROBERT J. COMSTOCK, ANDREW ATWOOD, GUIRONG PAN, ANAND GARDE, MATS DAHLBACK, JONNA PARTEZANA MUNDORFF, ANDREW J. MUELLER
-
Publication number: 20110293466Abstract: Articles, such as tubing or strips, which have excellent corrosion resistance to water or steam at elevated temperatures, are produced from alloys having 0.2 to 1.5 weight percent niobium, 0.01 to 0.6 weight percent iron, and optionally additional alloy elements selected from the group consisting of tin, chromium, copper, vanadium, and nickel with the balance at least 97 weight percent zirconium, including impurities, where a necessary final heat treatment includes one of i) a SRA or PRXA (15-20% RXA) final heat treatment, or ii) a PRXA (80-95% RXA) or RXA final heat treatment.Type: ApplicationFiled: June 16, 2011Publication date: December 1, 2011Applicant: WESTINGHOUSE ELECTRIC COMPANY LLCInventors: JOHN P. FOSTER, David COLBURN, Robert COMSTOCK, Terrence COOK, Mats DAHLBACK, Anand GARDE, Pascal JOURDAIN, Ronald KESTERSON, Michael MCCLARREN, Dianna Lynn SVEC NUHFER, Guirong PAN, Jonna Partezana MUNDORFF, Hsiang Ken YUEH, James BOSHERS, Penney FILE, Bethany Boshers
-
Publication number: 20100128834Abstract: Articles, such as tubing or strips, which have excellent corrosion resistance to water or steam at elevated temperatures, are produced from alloys having 0.2 to 1.5 weight percent niobium, 0.01 to 0.45 weight percent iron, at least one additional alloy element selected from 0.02 to 0.8 weight percent tin, 0.05 to 0.5 weight percent chromium, 0.02 to 0.3 weight percent copper, 0.1 to 0.3 weight percent vanadium, 0.01 to 0.1 weight percent nickel, the balance at least 97 weight percent zirconium, including impurities, wherein the alloy may be fabricated from a process of forging the zirconium alloy into a material, beta quenching the material, forming the material by extruding or hot rolling the material, cold working the material with one or a multiplicity of cold working steps, wherein the cold working step includes cold reducing the material and annealing the material at an intermediate anneal temperature of 960°-1105° F., and final working and annealing of the material.Type: ApplicationFiled: February 1, 2010Publication date: May 27, 2010Applicant: Westinghouse Electric Company LLCInventors: David Colburn, Robert Comstock, Terrence Cook, Mats Dahlback, John P. Foster, Anand Garde, Pascal Jourdain, Ronald Kesterson, Micheal McClarren, Lynn Nuhfer, Jonna Partezana, Kenneth Yueh, James A. Boshers, Penney File
-
Patent number: 5680424Abstract: A pressurized water reactor ("PWR") radial reflector fabricated of 20% to 30% cold worked AISI Type 316 stainless steel blocks will experience about 0.14% volumetric swelling at a neutron dose level of about 100 dpa at retirement. The reflector will not be susceptible to swelling-embrittlement at retirement.Type: GrantFiled: February 28, 1996Date of Patent: October 21, 1997Assignee: Westinghouse Electric CorporationInventor: John P. Foster
-
Patent number: 5516413Abstract: A high temperature-high pressure electrode for electrochemical potential measurement has a high temperature probe comprising an oxidized zirconium alloy tube member having an electroconductive core which includes a liquid electrolyte and a porous plug held in place by an oxidized zirconium alloy tube and end plug with an axial bore extending therethrough. The electroconductive core can comprise a liquid electrolyte of soaked zirconia sand and a second porous plug. In another embodiment, the zirconia sand is replaced by a surface oxidized zirconium alloy rod with grooves which extend between ends for containment of the liquid electrolyte. This embodiment also contains a second porous plug. In a modification of the latter embodiment, there is a bore in the proximal end of the surface oxidized rod which communicates with the grooves to provide electrical continuity. A Teflon sleeve forms an annular seal between the proximal end of the oxidized rod and the oxidized tube.Type: GrantFiled: September 1, 1993Date of Patent: May 14, 1996Assignee: Westinghouse Electric CorporationInventors: John P. Foster, Richard J. Jacko
-
Patent number: 5266131Abstract: A Zirlo alloy formed by beta quenching, hot deforming, recrystallize annealing and then cold deforming said alloy a plurality of times with recrystallize anneal steps performed between the cold deforming steps followed by stress relief annealing. The fabricating method can include a late stage beta quench step in place of one of the recrystallize anneal steps.Type: GrantFiled: March 6, 1992Date of Patent: November 30, 1993Assignee: Westinghouse Electric Corp.Inventors: John P. Foster, Pamela M. Stevenson
-
Patent number: 5242515Abstract: This is an improved method of fabricating Zircaloy-4 strip. The method is of the type wherein Zircaloy-4 material is vacuum melted, forged, hot reduced, beta-annealed, quenched, hot rolled, subjected to a post-hot-roll anneal and then reduced by at least two cold rolling steps, including a final cold rolling to final size, with intermediate annealing between the cold rolling steps and with a final anneal after the last cold rolling step. The improvement comprises: (a) utilizing a maximum processing temperature of 620.degree. C. between the quenching and the final cold rolling to final size; (b) utilizing a maximum intermediate annealing temperature of 520.degree. C.; and (c) utilizing hot rolling, post-hot-roll annealing, intermediate annealing and final annealing time-temperature combinations to give an A parameter of between 4.times.10.sup.-19 and 7.times.10.sup.Type: GrantFiled: August 21, 1992Date of Patent: September 7, 1993Assignee: Westinghouse Electric Corp.Inventors: Samuel A. Worcester, James P. Dougherty, John P. Foster
-
Patent number: 5230758Abstract: This is an alloy comprising, by weight percent, 0.5-2.0 niobium, 0.7-1.5 tin, 0.07-0.14 iron, and 0.03-0.14 of at least one of nickel and chromium, and at least 0.12 total of iron, nickel and chromium, and up to 220 ppm C, and the balance essentially zirconium. Preferably, the alloy contains 0.03-0.08 chromium, and 0.03-0.08 nickel. The alloy is also preferably subjected intermediate recrystallization anneals at a temperature of about 1200.degree.-1300.degree. F., and to a beta quench two steps prior to final size.Type: GrantFiled: March 18, 1992Date of Patent: July 27, 1993Assignee: Westinghouse Electric Corp.Inventors: John P. Foster, Robert J. Comstock, Samuel A. Worcester, George P. Sabol
-
Patent number: 5194101Abstract: This is an improved method of fabricating Zircaloy-4 strip. The method is of the type wherein Zircaloy-4 material is vacuum melted, forged, hot reduced, beta-annealed, quenched, hot rolled, subjected to a post-hot-roll anneal and then reduced by at least two cold rolling steps, including a final cold rolling to final size, with intermediate annealing between the cold rolling steps and with a final anneal after the last cold rolling step. The improvement comprises: (a) utilizing a maximum processing temperature of 620.degree. C. between the quenching and the final cold rolling to final size; (b) utilizing a maximum intermediate annealing temperature of 520.degree. C.; and (c) utilizing hot rolling, post-hot-roll annealing, intermediate annealing and final annealing time-temperature combinations to give an A parameter of between 4.times.10.sup.-19 and 7.times.10.sup.Type: GrantFiled: March 16, 1990Date of Patent: March 16, 1993Assignee: Westinghouse Electric Corp.Inventors: Samuel A. Worcester, James P. Dougherty, John P. Foster
-
Patent number: 5125985Abstract: This invention is for the processing of a somewhat broader range of compositions, including ZIRLO material. It controls creep rate in an alloy having, by weight percent, 0.5-2.0 niobium, 0.7-1.5 tin, 0.07-0.28 of at least one of iron, nickel and chromium and up to 220 ppm carbon, and the balance essentially zirconium. The method is of a type which utilizes subjecting the material to a post extrusion anneal, a series of intermediate area reductions and intermediate recrystallization anneals, with one of the intermediate recrystallization anneals possibly being a late stage beta-quench, a final pass area reduction, and a final stress relief anneal.Type: GrantFiled: May 30, 1991Date of Patent: June 30, 1992Assignee: Westinghouse Electric Corp.Inventors: John P. Foster, Samuel A. Worcester, Robert J. Comstock
-
Patent number: 5112573Abstract: This is an alloy comprising, by weight percent, 0.5-2.0 niobium, 0.7-1.5 tin, 0.07-0.14 iron, and 0.03-0.14 of at least one of nickel and chromium, and at least 0.12 total of iron, nickel and chromium, and up to 220 ppm C, and the balance essentially zirconium. Preferably, the alloy contains 0.03-0.08 chromium, and 0.03-0.08 nickel. The alloy is also preferably subjected intermediate recrystallization anneals at a temperature of about 1200.degree.-1300.degree. F., and to a beta quench two steps prior to final size.Type: GrantFiled: August 28, 1989Date of Patent: May 12, 1992Assignee: Westinghouse Electric Corp.Inventors: John P. Foster, Robert J. Comstock, Samuel A. Worcester, George P. Sabol
-
Patent number: 4990305Abstract: A method of producing enhanced radial texture in zirconium alloy tubing suitable for use in forming cladding for nuclear fuel rods is provided. The tubing production method described herein employs a combination of mechanical expansion and heat treatment steps in the final stage of tubing formation to produce a single peak radial texture in the tubing, thereby imparting enhanced resistance to pellet-cladding-interaction to the finished tubing. The tubing is preferably processed to a diameter within less than about 10 to 20% of the desired final diameter, annealed, and expanded less than about 10 to 20% to the desired final diameter, thereby producing a unique radial texture in the finished tubing. In an alternative method, the finally expanded tubing is subjected to a final recrystallization anneal to produce a significantly enhanced split radial texture.Type: GrantFiled: June 28, 1989Date of Patent: February 5, 1991Assignee: Westinghouse Electric Corp.Inventors: John P. Foster, Charles S. Cook, George P. Sabol
-
Patent number: 4933136Abstract: This invention describes a tubular water reactor fuel cladding having an outer cylindrical layer composed of a conventional zirconium base alloy. Bonded to the outer cylindrical layer is a second layer composed of an alloy selected from the group of zirconium base alloys consisting of: about 0.19 to 0.6 wt. % tin, about 0.19 to 0.5 wt. % iron, and about 100 to 700 ppm oxygen; or about 0.4 to 0.6 wt. % tin, about 0.1 to 0.3 wt. % iron, about 0.1 to 0.3 wt. % nickel, and about 100 to 700 ppm oxygen.Type: GrantFiled: August 10, 1988Date of Patent: June 12, 1990Assignee: Westinghouse Electric Corp.Inventors: John P. Foster, Samuel G. McDonald, III
-
Patent number: 4814136Abstract: This is a process for producing material for lining reactor fuel element claddings. Rather than using unalloyed zirconium, this invention provides for an alloy liner for the cladding. The process uses electron beam melting of zirconium, to give very low metallic impurities to reduce solid solution strengthening and second phase formation and property variability from lot to lot, while using alloying to reduce the susceptibility to steam corrosion. Preferably, oxygen is controlled to a low level as well, to provide a low, but fabricable, hardness in the alloyed liner material.Type: GrantFiled: October 28, 1987Date of Patent: March 21, 1989Assignee: Westinghouse Electric Corp.Inventors: George P. Sabol, Samuel A. Worcester, John P. Foster