Patents by Inventor John P. Joyce

John P. Joyce has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160009235
    Abstract: A system includes first and second failsafe devices. Each of the failsafe devices includes a processor and a memory. The memory stores instructions executable by the processor for performing at least one of detecting a fault and providing a communication concerning a fault. The system further includes an arbitration bus connecting the first and second failsafe devices. The communication concerning the fault may be provided from a first one of the first and second failsafe devices to a second one of the first and second failsafe devices.
    Type: Application
    Filed: March 20, 2015
    Publication date: January 14, 2016
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: John P. Joyce, Scott J. Lauffer
  • Patent number: 9212926
    Abstract: A vehicle is operated at least partially autonomously. A predicted path of the vehicle is monitored to identify an object with which the vehicle is likely to collide. A graphical user interface (GUI) is provided that includes the predicted path, a proposed path for the vehicle to avoid a collision with an object, and the vehicle. A selection is made to follow one of the predicted path and the proposed path. The GUI is updated to include the selected one of the predicted path and the proposed path, along with a location of the vehicle on the selected one of the predicted path and the proposed path.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: December 15, 2015
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Christopher Attard, Shane Elwart, Jeff Allen Greenberg, Rajit Johri, John P. Joyce, Devinder Singh Kochhar, Thomas Edward Pilutti, Douglas Scott Rhode, Matt Y. Rupp, John Shutko, Roger Arnold Trombley, Louis Tijerina, Hongtei Eric Tseng, Andrew Waldis
  • Publication number: 20150329093
    Abstract: Methods for controlling wheel slip of a motor vehicle include braking the wheel by supplying a first measured quantity of brake fluid from a modulation cylinder to a brake device of the wheel, determining the wheel slip of the wheel, and moving a second measured quantity of brake fluid between the modulation cylinder and the brake device. When the wheel slip is too small or too large, a change in a volume of the brake fluid in the modulation cylinder is measured and a change in a measure of a braking effect is determined. The second measured quantity of brake fluid is determined on the basis of the measured change in the volume of the brake fluid in the modulation cylinder and the change in the measure of the braking effect. Braking systems configured to carry out the methods, as well as vehicles including the braking systems, are further contemplated.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 19, 2015
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Thomas SVENSSON, John P. JOYCE
  • Publication number: 20150291138
    Abstract: Exemplary illustrations of a method are disclosed, including determining a baseline gradient and an increased gradient for a brake application force for a vehicle. Exemplary methods may further include actuating the baseline gradient in response to a first braking event for the vehicle, and actuating the increased gradient in response to a second braking event for the vehicle. Exemplary illustrations of a vehicle may include a braking system configured to apply braking force to at least one wheel of the vehicle, and a controller. The controller may be configured to determine a baseline gradient and an increased gradient for a brake application force for a vehicle. The controller may be configured to actuate the baseline gradient in response to a first braking event for the vehicle, and actuate the increased gradient in response to a second braking event for the vehicle.
    Type: Application
    Filed: April 14, 2014
    Publication date: October 15, 2015
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: John P. Joyce
  • Publication number: 20150274169
    Abstract: Vehicle operating systems are autonomously operated. A transient in an upcoming path of the vehicle is determined from a comparison of vehicle path data and vehicle status data to a threshold of mechanism first operating system. Operational parameters for one of first and second operating systems are selected according to the comparison. The selected operational parameters are applied to the operation of the one of the first and second operating systems.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 1, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Christopher Attard, Dale Scott Crombez, Jerome Charles Ivan, John P. Joyce, James Robert McBride, Wayne Williams, Paul Joseph Szuszman, Peter Worrel, Hai YU, John Shutko, Jeff Allen Greenberg, Rajit Johri, Devinder Singh Kochhar, Hongtei Eric Tseng, Douglas Scott Rhode
  • Publication number: 20150251666
    Abstract: One of a condition affecting a vehicle and a planned action of the vehicle are identified. An instruction is provided to actuate movement of a steering wheel in the vehicle, wherein the movement is determined according to the one of the condition and the planned action.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 10, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Christopher Attard, Shane Elwart, Jeff Allen Greenberg, Rajit Johri, John P. Joyce, Devinder Singh Kochhar, Douglas Scott Rhode, John Shutko, Louis Tijerina, Hongtei Eric Tseng
  • Patent number: 9126570
    Abstract: A hybrid or electric vehicle includes a hydraulic brake system having an active vacuum booster with an active boost control valve actuated by at least one controller. An isolation valve is disposed in a fluid circuit that fluidly connects a master cylinder to hydraulic brakes. A brake pedal is capable of moving in an initial deadband displacement range when initially depressed by an operator of the vehicle. While in the initial deadband displacement range, the controller selectively activates the isolation valve to inhibit fluid flow from at least a portion of the fluid circuit to the master cylinder based at least upon an operating state of the active boost control valve.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 8, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: John P. Joyce, Dale Scott Crombez, Daniel A. Gabor, John Phillip McCormick
  • Publication number: 20150197227
    Abstract: A vehicle regenerative braking control system includes a brake pedal; a brake pedal angle sensor interfacing with the brake pedal; a vehicle braking system interfacing with the brake pedal angle sensor, the vehicle braking system adapted to implement friction braking and regenerative braking responsive to receiving a brake pedal angle input signal from the brake pedal angle sensor; and at least one of a brake pedal switch and a brake master cylinder pressure sensor interfacing with the brake pedal and the vehicle braking system. The vehicle braking system is further adapted to implement friction braking and regenerative braking responsive to input from the at least one of a brake pedal switch and a brake master cylinder pressure sensor in the event that the vehicle braking system does not receive the brake pedal angle input signal from the brake pedal angle sensor. A regenerative braking control method is also disclosed.
    Type: Application
    Filed: January 12, 2014
    Publication date: July 16, 2015
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Jinkoo Lee, Dale Scott Crombez, Daniel A. Gabor, Scott J. Lauffer, John P. Joyce
  • Publication number: 20150178998
    Abstract: Data is collected during operation of a vehicle. A determination is made that a confidence assessment of at least one of the data indicates at least one fault condition. A first autonomous operation affected by the fault condition is discontinued, where a second autonomous operation that is unaffected by the fault condition is continued.
    Type: Application
    Filed: February 20, 2014
    Publication date: June 25, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Christopher Attard, Shane Elwart, Jeff Allen Greenberg, Rajit Johri, John P. Joyce, Devinder Singh Kochhar, Douglas Scott Rhode, John Shutko, Hongtei Eric Tseng
  • Publication number: 20150149018
    Abstract: A wearable computing device in a vehicle is identified by a vehicle in a computer. Collected data is received relating to autonomous operation of the vehicle. A message is sent to the wearable computing device based at least in part on the collected data.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Christopher Attard, Shane Elwart, Jeff Allen Greenberg, Rajit Johri, John P. Joyce, Devinder Singh Kochhar, Thomas Edward Pilutti, Douglas Scott Rhode, Matt Y. Rupp, John Shutko, Roger Arnold Trombley, Hongtei Eric Tseng, Andrew Waldis
  • Publication number: 20150149017
    Abstract: A vehicle operator is identified. Based at least in part on the operator's identity, one or more parameters are determined specifying a mode for autonomously operating the vehicle. The vehicle is autonomously operated at least in part according to the one or more parameters.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Christopher Attard, Shane Elwart, Jeff Allen Greenberg, Rajit Johri, John P. Joyce, Devinder Singh Kochhar, Douglas Scott Rhode, John Shutko, Louis Tijerna, Eric Hongtei Tseng, Wilford Trent Yopp
  • Publication number: 20150149088
    Abstract: A vehicle is operated at least partially autonomously. A predicted path of the vehicle is monitored to identify an object with which the vehicle is likely to collide. A graphical user interface (GUI) is provided that includes the predicted path, a proposed path for the vehicle to avoid a collision with an object, and the vehicle. A selection is made to follow one of the predicted path and the proposed path. The GUI is updated to include the selected one of the predicted path and the proposed path, along with a location of the vehicle on the selected one of the predicted path and the proposed path.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Christopher Attard, Shane Elwart, Jeff Allen Greenberg, Rajit Johri, John P. Joyce, Devinder Singh Kochhar, Thomas Edward Pilutti, Douglas Scott Rhode, Matt Y. Rupp, John Shutko, Roger Arnold Trombley, Louis Tijerina, Hongtei Eric Tseng, Andrew Waldis
  • Publication number: 20140265543
    Abstract: A hybrid or electric vehicle includes a hydraulic brake system having an active vacuum booster with an active boost control valve actuated by at least one controller. An isolation valve is disposed in a fluid circuit that fluidly connects a master cylinder to hydraulic brakes. A brake pedal is capable of moving in an initial deadband displacement range when initially depressed by an operator of the vehicle. While in the initial deadband displacement range, the controller selectively activates the isolation valve to inhibit fluid flow from at least a portion of the fluid circuit to the master cylinder based at least upon an operating state of the active boost control valve.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: John P. Joyce, Dale Scott Crombez, Daniel A. Gabor, John Phillip McCormick
  • Patent number: 8366203
    Abstract: A brake system for an automotive vehicle includes a controller for operating friction and powertrain braking subsystems so that hydraulic pressure to the friction brakes is minimized during powertrain braking, while at the same time emulating the driver-interface operating characteristics of a pure friction-braking system during all operating conditions.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: February 5, 2013
    Assignee: Ford Global Technologies
    Inventor: John P. Joyce
  • Publication number: 20110025120
    Abstract: A brake system for an automotive vehicle includes a controller for operating friction and powertrain braking subsystems so that hydraulic pressure to the friction brakes is minimized during powertrain braking, while at the same time emulating the driver-interface operating characteristics of a pure friction-braking system during all operating conditions.
    Type: Application
    Filed: October 5, 2010
    Publication date: February 3, 2011
    Inventor: John P. Joyce
  • Patent number: 4231077
    Abstract: A light toy which may be used as a science fiction light ray or as a signalling, marking or illumination device is disclosed. A light source sends a beam of light into a nonopaque tube along its axis. The beam is reflected back into the tube by a reflective surface on the inner side of the cap at the other end. The light emitting device emanates a glow through the walls of the tube making the device highly visible. A kit for converting an ordinary flashlight into a light toy is also disclosed.
    Type: Grant
    Filed: December 27, 1977
    Date of Patent: October 28, 1980
    Inventors: James E. Joyce, John P. Joyce