Patents by Inventor John P. Mugler, III
John P. Mugler, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240353514Abstract: Described herein are systems, methods, and computer-readable medium for magnetic resonance (MR) based thermometry. A method for magnetic resonance based thermometry includes: acquiring, by a variable flip-angle T1 mapping sequence, MR data in an area of interest of a subject that is heated by the application of focused ultrasound (FUS) to the brain of the subject, where the MR data includes T1 values over time, and where the acquisition of the MR data includes applying an accelerated three-dimensional ultra-short spiral acquisition sequence with a nonselective excitation pulse; tracking changes in proton resonance frequency and determining, based at least in part on a mathematical relationship established by T1 mapping thermometry, a temperature change in the area of interest over time, and where the temperature change is caused at least in part by a change in the applied FUS.Type: ApplicationFiled: April 19, 2024Publication date: October 24, 2024Inventors: Craig H. Meyer, John P. Mugler, III, Grady Wilson Miller, IV, Sheng Chen, Helen L. Sporkin, Steven P. Allen, Zhixing Wang
-
Publication number: 20240272258Abstract: Acquiring 3D MRI data using spiral-in-out encoding trajectories includes calculating a variable flip angle RF series for use as refocusing pulses, wherein the RF series includes a plurality of refocusing RF pulses. A spoiler gradient waveform is applied along the spoiler gradient direction, wherein the computer alternately adds and subtracts partition encoding waveforms to the spoiler gradient waveform. The method reads MRI data from each encoding step during an MRI sequence. The MRI sequence inserts a spiral-in gradient before a first refocusing RF pulse from the RF sequence, overlaps a pre-winder lobe for the encoding trajectory with the spoiler gradient waveform having the partition encoding waveforms added therein, and overlaps a rewinder lobe for the encoding trajectory with the spoiler gradient waveform having the partition encoding waveforms subtracted there from.Type: ApplicationFiled: January 2, 2024Publication date: August 15, 2024Inventors: Zhixing Wang, Rajiv Ramasawmy, Ahsan Javed, John P. Mugler, III, Craig H. Meyer, Adrienne E. Campbell
-
Publication number: 20240219501Abstract: Acquiring magnetic resonance imaging (MRI) data includes steps of using a computer to implement software program steps in a diffusion preparation software component and a spiral ring echo readout software component. The method implements the diffusion preparation software component by (i) applying at least a first diffusion gradient and a last diffusion gradient along a selected direction; and (ii) applying a magnitude stabilizer gradient, along said selected direction, after the last diffusion gradient. The method implements the spiral ring echo readout software component by (i) applying a rephasing gradient along said selected direction after a refocusing RF pulse; (ii) applying a dephasing gradient along said selected direction prior to a subsequent refocusing RF pulse; and (iii) acquiring spiral ring echo readout data between the refocusing RF pulse and the subsequent refocusing RF pulse.Type: ApplicationFiled: January 2, 2024Publication date: July 4, 2024Inventors: Zhixing Wang, John P. Mugler, III, Craig H. Meyer, Adrienne E. Campbell
-
Patent number: 11921179Abstract: Methods, computing devices, and magnetic resonance imaging systems that improve image quality in turbo spiral echo (TSE) imaging are disclosed. With this technology, a TSE pulse sequence is generated that includes a series of radio frequency (RF) refocusing pulses to produce a corresponding series of nuclear magnetic resonance (NMR) spin echo signals. A gradient waveform including a plurality of segments is generated. The plurality of segments collectively comprise a spiral ring retraced in-out trajectory. During an interval adjacent to each of the series of RF refocusing pulses, a first gradient pulse is generated according to the gradient waveform. The first gradient pulses encode the NMR spin echo signals. An image is then constructed from digitized samples of the NMR spin echo signals obtained based at least in part on the encoding.Type: GrantFiled: April 28, 2022Date of Patent: March 5, 2024Inventors: Zhixing Wang, Steven P. Allen, Xue Feng, John P. Mugler, III, Craig H. Meyer
-
Patent number: 11860258Abstract: Methods, computing devices, and MRI systems that reduce artifacts produced by Maxwell gradient terms in TSE imaging using non-rectilinear trajectories are disclosed. With this technology, a RF excitation pulse is generated to produce transverse magnetization that generates a NMR signal and a series of RF refocusing pulses to produce a corresponding series of NMR spin-echo signals. An original encoding gradient waveform comprising a non-rectilinear trajectory is modified by adjusting a portion of the original encoding gradient waveform or introducing a zero zeroth-moment waveform segment at end(s) of the original encoding gradient waveform. During an interval adjacent to each of the series of RF refocusing pulses a first gradient pulse is generated. At least one of the first gradient pulses is generated according to the modified gradient waveform. An image is constructed from generated digitized samples of the NMR spin-echo signals obtained.Type: GrantFiled: April 28, 2022Date of Patent: January 2, 2024Assignees: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, SIEMENS HEALTHCARE GMBH, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICESInventors: John P. Mugler, III, Craig H. Meyer, Adrienne Campbell, Rajiv Ramasawmy, Josef Pfeuffer, Zhixing Wang, Xue Feng
-
Patent number: 11846692Abstract: Training a neural network to correct motion-induced artifacts in magnetic resonance images includes acquiring motion-free magnetic resonance image (MRI) data of a target object and applying a spatial transformation matrix to the motion-free MRI data. Multiple frames of MRI data are produced having respective motion states. A Non-uniform Fast Fourier Transform (NUFFT) can be applied to generate respective k-space data sets corresponding to each of the multiple frames of MRI; the respective k-space data sets can be combined to produce a motion-corrupted k-space data set and an adjoint NUFFT can be applied to the motion-corrupted k-space data set. Updated frames of motion-corrupted MRI data can be formed. Using the updated frames of motion corrupted MRI data, a neural network can be trained that generates output frames of motion free MRI data; and the neural network can be saved.Type: GrantFiled: April 29, 2022Date of Patent: December 19, 2023Assignee: University of Virginia Patent FoundationInventors: Quan Dou, Zhixing Wang, Xue Feng, John P. Mugler, III, Craig H. Meyer
-
Publication number: 20230342886Abstract: MR image data can be improved by using a complex de-noising convolutional neural network such as a non-blind C-DnCNN, a network for MRI denoising that leverages complex-valued data with phase information and noise level information to improve denoising performance in various settings. The proposed method achieved superior performance on both simulated and in vivo testing data compared to other algorithms. The utilization of complex-valued operations allows the network to better exploit the complex-valued MRI data and preserve the phase information. The MR image data is subject to complex de-noising operations directly and simultaneously on both real and imaginary parts of the image data. Complex and real values are also utilized for block normalization and rectified linear units applied to the noisy image data. A residual image is predicted by the C-DnCNN and a clean MR image is available for extraction.Type: ApplicationFiled: March 9, 2023Publication date: October 26, 2023Inventors: Craig H. Meyer, Quan Dou, Zhixing Wang, Xue Feng, John P. Mugler, III
-
Patent number: 11747419Abstract: Systems and methods for performing ungated magnetic resonance imaging are disclosed herein. A method includes producing magnetic resonance image MRI data by scanning a target in a low magnetic field with a pulse sequence having a spiral trajectory; sampling k-space data from respective scans in the low magnetic field and receiving at least one field map data acquisition and a series of MRI data acquisitions from the respective scans; forming a field map and multiple sensitivity maps in image space from the field map data acquisition; forming target k-space data with the series of MRI data acquisitions; forming initial magnetic resonance images in the image domain by applying a Non-Uniform Fast Fourier Transform to the target k-space data; and forming reconstructed images with a low rank plus sparse (L+S) reconstruction algorithm applied to the initial magnetic resonance images.Type: GrantFiled: April 29, 2022Date of Patent: September 5, 2023Assignee: University of Virginia Patent FoundationInventors: Zhixing Wang, Xue Feng, John P. Mugler, III, Michael Salerno, Adrienne E. Campbell-Washburn, Craig H. Meyer
-
Patent number: 11644520Abstract: Described herein are systems, methods, and computer-readable medium for magnetic resonance (MR) based thermometry. In one aspect, in accordance with one embodiment, a method for magnetic resonance based thermometry includes: acquiring, by a variable flip-angle T1 mapping sequence, MR data in an area of interest of a subject that is heated by the application of focused ultrasound (FUS) to the brain of the subject, where the MR data includes T1 values over time, and where the acquisition of the MR data includes applying an accelerated three-dimensional ultra-short spiral acquisition sequence with a nonselective excitation pulse; and determining, based at least in part on a mathematical relationship established by T1 mapping thermometry, a temperature change in the area of interest over time, and where the temperature change is caused at least in part by a change in the applied FUS.Type: GrantFiled: January 8, 2021Date of Patent: May 9, 2023Assignee: University of Virginia Patent FoundationInventors: Yekaterina K. Gilbo, Helen L. Sporkin, Samuel W. Fielden, John P. Mugler, III, Grady W. Miller, IV, Steven P. Allen, Craig H. Meyer
-
Publication number: 20220373627Abstract: Methods, computing devices, and magnetic resonance imaging systems that improve image quality in turbo spiral echo (TSE) imaging are disclosed. With this technology, a TSE pulse sequence is generated that includes a series of radio frequency (RF) refocusing pulses to produce a corresponding series of nuclear magnetic resonance (NMR) spin echo signals. A gradient waveform including a plurality of segments is generated. The plurality of segments collectively comprise a spiral ring retraced in-out trajectory. During an interval adjacent to each of the series of RF refocusing pulses, a first gradient pulse is generated according to the gradient waveform. The first gradient pulses encode the NMR spin echo signals. An image is then constructed from digitized samples of the NMR spin echo signals obtained based at least in part on the encoding.Type: ApplicationFiled: April 28, 2022Publication date: November 24, 2022Applicant: University of Virginia Patent FoundationInventors: Zhixing Wang, Steven P. Allen, Xue Feng, John P. Mugler, III, Craig H. Meyer
-
Publication number: 20220373630Abstract: Training a neural network to correct motion-induced artifacts in magnetic resonance images includes acquiring motion-free magnetic resonance image (MRI) data of a target object and applying a spatial transformation matrix to the motion-free MRI data. Multiple frames of MRI data are produced having respective motion states. A Non-uniform Fast Fourier Transform (NUFFT) can be applied to generate respective k-space data sets corresponding to each of the multiple frames of MRI; the respective k-space data sets can be combined to produce a motion-corrupted k-space data set and an adjoint NUFFT can be applied to the motion-corrupted k-space data set. Updated frames of motion-corrupted MRI data can be formed. Using the updated frames of motion corrupted MRI data, a neural network can be trained that generates output frames of motion free MRI data; and the neural network can be saved.Type: ApplicationFiled: April 29, 2022Publication date: November 24, 2022Inventors: Quan Dou, Zhixing Wang, Xue Feng, John P. Mugler, III, Craig H. Meyer
-
Publication number: 20220357416Abstract: Methods, computing devices, and MRI systems that reduce artifacts produced by Maxwell gradient terms in TSE imaging using non-rectilinear trajectories are disclosed. With this technology, a RF excitation pulse is generated to produce transverse magnetization that generates a NMR signal and a series of RF refocusing pulses to produce a corresponding series of NMR spin-echo signals. An original encoding gradient waveform comprising a non-rectilinear trajectory is modified by adjusting a portion of the original encoding gradient waveform or introducing a zero zeroth-moment waveform segment at end(s) of the original encoding gradient waveform. During an interval adjacent to each of the series of RF refocusing pulses a first gradient pulse is generated. At least one of the first gradient pulses is generated according to the modified gradient waveform. An image is constructed from generated digitized samples of the NMR spin-echo signals obtained.Type: ApplicationFiled: April 28, 2022Publication date: November 10, 2022Applicant: University of Virginia Patent FoundationInventors: John P. Mugler, III, Craig H. Meyer, Adrienne Campbell, Rajiv Ramasawmy, Josef Pfeuffer
-
Publication number: 20220349970Abstract: Systems and methods for performing ungated magnetic resonance imaging are disclosed herein. A method includes producing magnetic resonance image MRI data by scanning a target in a low magnetic field with a pulse sequence having a spiral trajectory; sampling k-space data from respective scans in the low magnetic field and receiving at least one field map data acquisition and a series of MRI data acquisitions from the respective scans; forming a field map and multiple sensitivity maps in image space from the field map data acquisition; forming target k-space data with the series of MRI data acquisitions; forming initial magnetic resonance images in the image domain by applying a Non-Uniform Fast Fourier Transform to the target k-space data; and forming reconstructed images with a low rank plus sparse (L+S) reconstruction algorithm applied to the initial magnetic resonance images.Type: ApplicationFiled: April 29, 2022Publication date: November 3, 2022Inventors: Zhixing Wang, Xue Feng, John P. Mugler, III, Michael Salerno, Adrienne E. Campbell-Washburn, Craig H. Meyer
-
Patent number: 11204409Abstract: Systems and methods for reconstructing a motion-compensated magnetic resonance image are presented. In certain implementations, a computer-implemented method is provided. The method may include a plurality of operations, including receiving a set of k-space data from a magnetic resonance imaging device, dividing the set of k-space data into a plurality of groups, performing a plurality of initialization operations, performing a first iterative process until a first criteria for the first iterative process is achieved for a current scale of motion estimation, performing a second iterative process until a second criteria for the second iterative process is achieved, and outputting a motion-compensated magnetic resonance image reconstructed in accordance with a predetermined scale of motion estimation.Type: GrantFiled: October 11, 2019Date of Patent: December 21, 2021Assignee: University of Virginia Patent FoundationInventors: Luonan Wang, Daniel Stuart Weller, John P. Mugler, III, Craig H. Meyer
-
Patent number: 11085980Abstract: In one aspect, in accordance with one embodiment, a method includes acquiring magnetic resonance (MR) data corresponding to bone tissue in an area of interest of a subject that is heated from the application of localized energy. The acquiring includes applying a three-dimensional (3D) ultra-short echo time (UTE) spiral acquisition sequence. The method also includes detecting, from the acquired magnetic resonance data, a change in MR response signal due to a change in at least one of relaxation rate and magnetization density caused by heating of the bone tissue; and determining, based at least in part on the change in the MR response signal, that the temperature of the bone tissue has changed.Type: GrantFiled: May 12, 2017Date of Patent: August 10, 2021Assignees: University of Virginia Patent Foundation, The Board of Trustees of the Leland Stanford Junior UniversityInventors: Samuel W. Fielden, John P. Mugler, III, G. Wilson Miller, IV, Kim Butts Pauly, Craig H. Meyer
-
Publication number: 20210208225Abstract: Described herein are systems, methods, and computer-readable medium for magnetic resonance (MR) based thermometry. In one aspect, in accordance with one embodiment, a method for magnetic resonance based thermometry includes: acquiring, by a variable flip-angle T1 mapping sequence, MR data in an area of interest of a subject that is heated by the application of focused ultrasound (FUS) to the brain of the subject, where the MR data includes T1 values over time, and where the acquisition of the MR data includes applying an accelerated three-dimensional ultra-short spiral acquisition sequence with a nonselective excitation pulse; and determining, based at least in part on a mathematical relationship established by T1 mapping thermometry, a temperature change in the area of interest over time, and where the temperature change is caused at least in part by a change in the applied FUS.Type: ApplicationFiled: January 8, 2021Publication date: July 8, 2021Inventors: Yekaterina K. Gilbo, Helen L. Sporkin, Samuel W. Fielden, John P. Mugler, III, Grady W. Miller, IV, Steven P. Allen, Craig H. Meyer
-
Patent number: 10718837Abstract: Some aspects of the present disclosure relate to ultrashort-echo-time (UTE) imaging. In one embodiment, a method includes acquiring UTE imaging data associated with an area of interest of a subject. The acquiring comprises applying an imaging pulse sequence with a three-dimensional (3D) spiral acquisition and a nonselective excitation pulse. The method also includes reconstructing at least one image of the area of interest from the acquired UTE imaging data.Type: GrantFiled: April 21, 2017Date of Patent: July 21, 2020Assignees: UNIVERSITY OF VIRGINIA PATENT FOUNDATION, SIEMENS HEALTHCARE GMBHInventors: John P. Mugler, III, Samuel W. Fielden, G. Wilson Miller, IV, Craig H. Meyer, Talissa A. Altes, Alto Stemmer, Josef Pfeuffer, Berthold Kiefer
-
Patent number: 10557908Abstract: In some aspects, the disclosed technology relates to magnetic field monitoring of spiral echo train imaging. In one embodiment, a method for spiral echo train imaging of an area of interest of a subject includes measuring k-space values and field dynamics corresponding to each echo of a spiral echo pulse train, using a dynamic field camera and a magnetic resonance imaging (MRI) system. The dynamic field camera is configured to measure characteristics of fields generated by the MRI system; the characteristics include at least one imperfection associated with the MRI system. The spiral echo pulse train corresponds to a spiral trajectory scan from the MRI system that obtains magnetic resonance imaging data using a pulse sequence which applies spiral gradients in-plane with through-plane phase encoding.Type: GrantFiled: April 6, 2018Date of Patent: February 11, 2020Assignee: University of Virginia Patent FoundationInventors: Craig H. Meyer, John P. Mugler, III, Samuel W. Fielden, Gudrun Ruyters, Berthold Kiefer, Josef Pfeuffer
-
Patent number: RE47178Abstract: A magnetic resonance imaging “MRI” method and apparatus for lengthening the usable echo-train duration and reducing the power deposition for imaging is provided. The method explicitly considers the t1 and t2 relaxation times for the tissues of interest, and permits the desired image contrast to be incorporated into the tissue signal evolutions corresponding to the long echo train. The method provides a means to shorten image acquisition times and/or increase spatial resolution for widely-used spin-echo train magnetic resonance techniques, and enables high-field imaging within the safety guidelines established by the Food and Drug Administration for power deposition in human MRI.Type: GrantFiled: May 11, 2015Date of Patent: December 25, 2018Assignee: University of Virginia Patent FoundationInventors: John P. Mugler, III, James R. Brookeman
-
Patent number: RE48347Abstract: A magnetic resonance imaging “MRI” method and apparatus for lengthening the usable echo-train duration and reducing the power deposition for imaging is provided. The method explicitly considers the t1 and t2 relaxation times for the tissues of interest, and permits the desired image contrast to be incorporated into the tissue signal evolutions corresponding to the long echo train. The method provides a means to shorten image acquisition times and/or increase spatial resolution for widely-used spin-echo train magnetic resonance techniques, and enables high-field imaging within the safety guidelines established by the Food and Drug Administration for power deposition in human MRI.Type: GrantFiled: November 19, 2018Date of Patent: December 8, 2020Assignee: University of Virginia Patent FoundationInventors: John P. Mugler, III, James R. Brookeman