Patents by Inventor John P. Seymour

John P. Seymour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240065604
    Abstract: A directional and scalable (DISC) electrode array includes an insulating body, a first plurality of microelectrodes, and a second plurality of microelectrodes. The insulating body includes an electrically insulating material, and has a length and a diameter. The diameter is at least 400 microns, and the length is greater than the diameter. The first plurality of microelectrodes is disposed along the length of the insulating body. The second plurality of microelectrodes is disposed along the length of the insulating body opposite the first plurality of microelectrodes. Further columns of microelectrodes improve the directional sensitivity of DISC.
    Type: Application
    Filed: October 26, 2021
    Publication date: February 29, 2024
    Inventors: John P. SEYMOUR, Nitin TANDON
  • Patent number: 11234627
    Abstract: An optical electrode having a plurality of electrodes, including a recording electrode having a roughened surface and an optical light source configured to emit light, wherein at least a portion of the light impinges on the recording electrode. Also disclosed are methods of producing an optical electrode and an opto-electronic neural interface system.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: February 1, 2022
    Assignee: NeuroNexus Technologies, Inc.
    Inventors: John P. Seymour, Jongeun Jeon, Nicholas Hewitt, Abeer Khurram
  • Patent number: 11096614
    Abstract: A method for providing a neural interface system. At least one primary metallization layer is deposited on a substrate. The primary metallization layer has a thickness. A monolayer of nanospheres is deposited in a substantially uniform distribution. The nanospheres contact an upper surface of the primary metallization layer. The upper surface of the primary metallization layer not contacted by the nanospheres is treated to form a plurality of undulating structures having a substantially uniform arrangement. The treating comprises etching recesses part-way through the thickness of exposed portions of the primary metallization layer from the upper surface thereof.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: August 24, 2021
    Assignee: Neuronexus Technologies, Inc.
    Inventor: John P. Seymour
  • Patent number: 10695581
    Abstract: An optoelectrode having a lens optically coupled between a light source and a light guide and a method of making an optoelectrode. In one embodiment of the optoelectrode, the lens is a gradient index (GRIN) lens and the light source is a side-emitting injection laser diode (ILD). The optoelectrodes can be implemented such that they are high density, highly compact, monolithically integrated, and can deliver multicolor light output independently and simultaneously at a common waveguide port using an optical mixer, for example. In a preferred embodiment, the optoelectrodes are used as neural probes.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: June 30, 2020
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Komal Kampasi, Euisik Yoon, John P. Seymour
  • Publication number: 20200046239
    Abstract: An optical electrode having a plurality of electrodes, including a recording electrode having a roughened surface and an optical light source configured to emit light, wherein at least a portion of the light impinges on the recording electrode. Also disclosed are methods of producing an optical electrode and an opto-electronic neural interface system.
    Type: Application
    Filed: February 15, 2019
    Publication date: February 13, 2020
    Inventors: John P. Seymour, Jongeun Jeon, Nicholas Hewitt, Abeer Khurram
  • Publication number: 20190374770
    Abstract: The neural interface system of one embodiment includes a cylindrical shaft, a lateral extension longitudinally coupled to at least a portion of the shaft and having a thickness less than a diameter of the shaft, and an electrode array arranged on the lateral extension and radially offset from the shaft, including electrode sites that electrically interface with their surroundings. The method of one embodiment for making the neural interface system includes forming a planar polymer substrate with at least one metallization layer, patterning on at least one metallization layer an electrode array on a first end of the substrate, patterning conductive traces on at least one metallization layer, rolling a portion of the substrate toward the first end of the substrate, and securing the rolled substrate into a shaft having the first end of the substrate laterally extending from the shaft and the electrode array radially offset from the shaft.
    Type: Application
    Filed: April 5, 2019
    Publication date: December 12, 2019
    Inventors: John P. Seymour, Jamille Farraye Hetke, Rio J. Vetter, Daryl R. Kipke, David S. Pellinen, KC Kong
  • Patent number: 10493297
    Abstract: An implantable optical electrode having a thin film electrode array including a plurality of electrodes, a light source associated with the thin film electrode array, and a passive bioactive agent delivery module associated with the thin film electrode array. Also disclosed are methods of manufacturing the array and a neural interface system with passive fluid delivery.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: December 3, 2019
    Assignee: NeuroNexus Technologies, Inc.
    Inventors: John P. Seymour, KC Kong, Rio J. Vetter
  • Patent number: 10252047
    Abstract: The neural interface system of one embodiment includes a cylindrical shaft, a lateral extension longitudinally coupled to at least a portion of the shaft and having a thickness less than a diameter of the shaft, and an electrode array arranged on the lateral extension and radially offset from the shaft, including electrode sites that electrically interface with their surroundings. The method of one embodiment for making the neural interface system includes forming a planar polymer substrate with at least one metallization layer, patterning on at least one metallization layer an electrode array on a first end of the substrate, patterning conductive traces on at least one metallization layer, rolling a portion of the substrate toward the first end of the substrate, and securing the rolled substrate into a shaft having the first end of the substrate laterally extending from the shaft and the electrode array radially offset from the shaft.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: April 9, 2019
    Assignee: NEURONEXUS TECHNOLOGIES, INC.
    Inventors: John P. Seymour, Jamille Farraye Hetke, Rio J. Vetter, Daryl R. Kipke, David S. Pellinen, Kc Kong
  • Patent number: 10231636
    Abstract: An optical electrode having a plurality of electrodes, including a recording electrode having a roughened surface and an optical light source configured to emit light, wherein at least a portion of the light impinges on the recording electrode. Also disclosed are methods of producing an optical electrode and an opto-electronic neural interface system.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: March 19, 2019
    Assignee: NeuroNexus Technologies, Inc.
    Inventors: John P. Seymour, Jongeun Jeon, Nicholas Hewitt, Abeer Khurram
  • Publication number: 20190038892
    Abstract: A method for providing a neural interface system. At least one primary metallization layer is deposited on a substrate. The primary metallization layer has a thickness. A monolayer of nanospheres is deposited in a substantially uniform distribution. The nanospheres contact an upper surface of the primary metallization layer. The upper surface of the primary metallization layer not contacted by the nanospheres is treated to form a plurality of undulating structures having a substantially uniform arrangement. The treating comprises etching recesses part-way through the thickness of exposed portions of the primary metallization layer from the upper surface thereof.
    Type: Application
    Filed: August 20, 2018
    Publication date: February 7, 2019
    Inventor: John P Seymour
  • Patent number: 10052476
    Abstract: Improved low-cost, highly reliable methods for increasing the electrochemical surface area of neural electrodes are described. A mono-layer of polymeric nanospheres is first deposited on a metallization supported on a dielectric substrate. The nanospheres self-assemble into generally repeating lattice forms with interstitial space between them. Then, the geometric surface area of the metallization material is increased by either selectively etching part-way into its depth at the interstitial space between adjacent nanospheres. Another technique is to deposit addition metallization material into the interstitial space. The result is undulation surface features provided on the exposed surface of the metallization. This helps improve the electrochemical surface area when the treated metallizations are fabricated into electrodes.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: August 21, 2018
    Assignee: NeuroNexus Technologies, Inc.
    Inventor: John P. Seymour
  • Publication number: 20180110431
    Abstract: An optical electrode having a plurality of electrodes, including a recording electrode having a roughened surface and an optical light source configured to emit light, wherein at least a portion of the light impinges on the recording electrode. Also disclosed are methods of producing an optical electrode and an opto-electronic neural interface system.
    Type: Application
    Filed: October 9, 2017
    Publication date: April 26, 2018
    Inventors: John P. Seymour, Jongeun Jeon, Nicholas Hewitt, Abeer Khurram
  • Publication number: 20170326382
    Abstract: Waveguide neural interface devices and methods for fabricating such devices are provided herein. An exemplary interface device includes a neural device comprising an exterior neural device sidewall extending to a distal end portion of the neural device, an array of electrode sites supported by a first face of the neural device sidewall. The array includes a recording electrode site. The exemplary interface device further includes a waveguide extending along the neural device, the waveguide having a distal end to emit light to illuminate targeted tissue adjacent to the recording electrode site, and a light redirecting element disposed at the distal end of the waveguide. The light redirecting element redirects light traveling through the waveguide in a manner that avoids direct illumination of the recording electrode site on the first face of the neural device sidewall.
    Type: Application
    Filed: May 8, 2017
    Publication date: November 16, 2017
    Applicant: NeuroNexus Technologies, Inc.
    Inventors: John P. Seymour, Mayurachat Ning Gulari, Daryl R. Kipke, KC Kong
  • Patent number: 9782091
    Abstract: An optical electrode having a plurality of electrodes, including a recording electrode having a roughened surface and an optical light source configured to emit light, wherein at least a portion of the light impinges on the recording electrode. Also disclosed are methods of producing an optical electrode and an opto-electronic neural interface system.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: October 10, 2017
    Assignee: NEURONEXUS TECHNOLOGIES, INC.
    Inventors: John P. Seymour, Jongeun Jeon, Nicholas Hewitt, Abeer Khurram
  • Patent number: 9700736
    Abstract: A neural interface array including an optical waveguide, a thin film electrode array associated with the optical waveguide, the thin film electrode array having a plurality of electrodes, and a fluid delivery channel attached to at least one of the optical waveguide and the thin film electrode array. Also disclosed are methods for optical stimulation and a neural interface system with active fluid delivery.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: July 11, 2017
    Assignee: NEURONEXUS TECHNOLOGIES, INC.
    Inventors: John P. Seymour, Kc Kong, Rio J. Vetter
  • Patent number: 9643027
    Abstract: A waveguide neural interface device including: a neural device implantable in tissue and including an array of electrode sites that electrically communicate with their surroundings, in which the array of electrode sites includes at least one recording electrode site; and a waveguide, coupled to the neural device, that carries light along a longitudinal axis and includes a light directing element that redirects the carried light from the waveguide to illuminate selectively targeted tissue, in which at least a portion of the redirected light is directed laterally away from the longitudinal axis and the recording electrode site is configured to sample illuminated tissue. A method for assembling a waveguide neural interface device is also described.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: May 9, 2017
    Assignee: NEURONEXUS TECHNOLOGIES, INC.
    Inventors: John P. Seymour, Mayurachat Ning Gulari, Daryl R. Kipke, Kc Kong
  • Publication number: 20160367836
    Abstract: An optoelectrode having a lens optically coupled between a light source and a light guide and a method of making an optoelectrode. In one embodiment of the optoelectrode, the lens is a gradient index (GRIN) lens and the light source is a side-emitting injection laser diode (ILD). The optoelectrodes can be implemented such that they are high density, highly compact, monolithically integrated, and can deliver multicolor light output independently and simultaneously at a common waveguide port using an optical mixer, for example. In a preferred embodiment, the optoelectrodes are used as neural probes.
    Type: Application
    Filed: June 17, 2016
    Publication date: December 22, 2016
    Inventors: Komal KAMPASI, Euisik YOON, John P. SEYMOUR
  • Patent number: 9289151
    Abstract: An improved deformable carrier or connector for an implantable neural interface device is described. The neural interface device comprises a carrier supporting at least one electrode array. The carrier comprises a tubular sidewall extending from a proximal carrier portion to a distal carrier portion. At least one deformable segment is provided in the carrier sidewall. The deformable segment is more pliable than the remainder of the carrier sidewall to preferably move in response to forces imparted on the carrier and the electrode array by the shifting forces in body tissue. The deformable segment takes the form of a thinned sidewall segment or a slitted wall segment.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: March 22, 2016
    Assignee: Greatbatch Ltd.
    Inventors: Daryl R. Kipke, Jamille Farraye Hetke, Rio J. Vetter, John P. Seymour
  • Publication number: 20160067473
    Abstract: Improved low-cost, highly reliable methods for increasing the electrochemical surface area of neural electrodes are described. A mono-layer of polymeric nanospheres is first deposited on a metallization supported on a dielectric substrate. The nanospheres self-assemble into generally repeating lattice forms with interstitial space between them. Then, the geometric surface area of the metallization material is increased by either selectively etching part-way into its depth at the interstitial space between adjacent nanospheres. Another technique is to deposit addition metallization material into the interstitial space. The result is undulation surface features provided on the exposed surface of the metallization. This helps improve the electrochemical surface area when the treated metallizations are fabricated into electrodes.
    Type: Application
    Filed: November 16, 2015
    Publication date: March 10, 2016
    Inventor: John P. Seymour
  • Patent number: 9192757
    Abstract: Improved low-cost, highly reliable methods for increasing the electrochemical surface area of neural electrodes are described. A mono-layer of polymeric nanospheres is first deposited on a metallization supported on a dielectric substrate. The nanospheres self-assemble into generally repeating lattice forms with interstitial space between them. Then, the geometric surface area of the metallization material is increased by either selectively etching part-way into its depth at the interstitial space between adjacent nanospheres. Another technique is to deposit addition metallization material into the interstitial space. The result is undulation surface features provided on the exposed surface of the metallization. This helps improve the electrochemical surface area when the treated metallizations are fabricated into electrodes.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: November 24, 2015
    Assignee: Greatbatch Ltd.
    Inventor: John P. Seymour