Patents by Inventor John Palmour

John Palmour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10784338
    Abstract: A method of forming a transistor device includes providing a drift layer having a first conductivity type, forming a first region in the drift layer, the first region having a second conductivity type that is opposite the first conductivity type, forming a body layer on the drift layer including the first region, forming a source layer on the body layer, forming a trench in the source layer and the body layer above the first region and extending into the first region, forming a gate insulator on the inner sidewall of the trench, and forming a gate contact on the gate insulator.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: September 22, 2020
    Assignee: Cree, Inc.
    Inventors: Lin Cheng, Anant Agarwal, Vipindas Pala, John Palmour
  • Publication number: 20190067414
    Abstract: A method of forming a transistor device includes providing a drift layer having a first conductivity type, forming a first region in the drift layer, the first region having a second conductivity type that is opposite the first conductivity type, forming a body layer on the drift layer including the first region, forming a source layer on the body layer, forming a trench in the source layer and the body layer above the first region and extending into the first region, forming a gate insulator on the inner sidewall of the trench, and forming a gate contact on the gate insulator.
    Type: Application
    Filed: October 29, 2018
    Publication date: February 28, 2019
    Inventors: Lin Cheng, Anant Agarwal, Vipindas Pala, John Palmour
  • Patent number: 10134834
    Abstract: A method of forming a transistor device includes providing a drift layer having a first conductivity type, forming a first region in the drift layer, the first region having a second conductivity type that is opposite the first conductivity type, forming a body layer on the drift layer including the first region, forming a source layer on the body layer, forming a trench in the source layer and the body layer above the first region and extending into the first region, forming a gate insulator on the inner sidewall of the trench, and forming a gate contact on the gate insulator.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: November 20, 2018
    Assignee: Cree, Inc.
    Inventors: Lin Cheng, Anant Agarwal, Vipindas Pala, John Palmour
  • Publication number: 20170092715
    Abstract: A method of forming a transistor device includes providing a drift layer having a first conductivity type, forming a first region in the drift layer, the first region having a second conductivity type that is opposite the first conductivity type, forming a body layer on the drift layer including the first region, forming a source layer on the body layer, forming a trench in the source layer and the body layer above the first region and extending into the first region, forming a gate insulator on the inner sidewall of the trench, and forming a gate contact on the gate insulator.
    Type: Application
    Filed: December 8, 2016
    Publication date: March 30, 2017
    Inventors: Lin Cheng, Anant Agarwal, Vipindas Pala, John Palmour
  • Patent number: 9570585
    Abstract: A method of forming a transistor device includes providing a drift layer having a first conductivity type, forming a first region in the drift layer, the first region having a second conductivity type that is opposite the first conductivity type, forming a body layer on the drift layer including the first region, forming a source layer on the body layer, forming a trench in the source layer and the body layer above the first region and extending into the first region, forming a gate insulator on the inner sidewall of the trench, and forming a gate contact on the gate insulator.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: February 14, 2017
    Assignee: Cree, Inc.
    Inventors: Lin Cheng, Anant Agarwal, Vipindas Pala, John Palmour
  • Patent number: 9306061
    Abstract: A transistor device includes a first conductivity type drift layer, a second conductivity type first region in the drift layer, a body layer having the second conductivity type on the drift layer including the first region, a source layer on the body layer, and a body contact region that extends through the source layer and the body layer and into the first region. The transistor device further includes a trench through the source layer and the body layer and extending into the drift layer adjacent the first region. The trench has an inner sidewall facing away from the first region. A gate insulator is on the inner sidewall of the trench, and a gate contact is on the gate insulator.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 5, 2016
    Assignee: Cree, Inc.
    Inventors: Lin Cheng, Anant Agarwal, Vipindas Pala, John Palmour
  • Patent number: 9240476
    Abstract: A method of forming a transistor device includes providing a drift layer having a first conductivity type and an upper surface, forming first regions in the drift layer and adjacent the upper surface, the first regions having a second conductivity type that is opposite the first conductivity type and being spaced apart from one another, forming a body layer on the drift layer including the source regions, forming spaced apart source regions in the body layer above respective ones of the first regions, forming a vertical conduction region in the body layer between the source regions, the vertical conduction region having the first conductivity type and defining channel regions in the body layer between the vertical conduction region and respective ones of the source regions, forming a gate insulator on the body layer, and forming a gate contact on the gate insulator.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 19, 2016
    Assignee: Cree, Inc.
    Inventors: Vipindis Pala, Lin Cheng, Jason Henning, Anant Agarwal, John Palmour
  • Publication number: 20160005837
    Abstract: A method of forming a transistor device includes providing a drift layer having a first conductivity type, forming a first region in the drift layer, the first region having a second conductivity type that is opposite the first conductivity type, forming a body layer on the drift layer including the first region, forming a source layer on the body layer, forming a trench in the source layer and the body layer above the first region and extending into the first region, forming a gate insulator on the inner sidewall of the trench, and forming a gate contact on the gate insulator.
    Type: Application
    Filed: September 17, 2015
    Publication date: January 7, 2016
    Inventors: Lin Cheng, Anant Agarwal, Vipindas Pala, John Palmour
  • Patent number: 9142662
    Abstract: A semiconductor device includes a drift layer having a first conductivity type, a well region in the drift layer having a second conductivity type opposite the first conductivity type, and a source region in the well region, The source region has the first conductivity type and defines a channel region in the well region. The source region includes a lateral source region adjacent the channel region and a plurality of source contact regions extending away from the lateral source region opposite the channel region. A body contact region having the second conductivity type is between at least two of the plurality of source contact regions and is in contact with the well region. A source ohmic contact overlaps at least one of the source contact regions and the body contact region. A minimum dimension of a source contact area of the semiconductor device is defined by an area of overlap between the source ohmic contact and the at least one source contact region.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: September 22, 2015
    Assignee: Cree, Inc.
    Inventors: Sei-Hyung Ryu, Doyle Craig Capell, Lin Cheng, Sarit Dhar, Charlotte Jonas, Anant Agarwal, John Palmour
  • Patent number: 9142668
    Abstract: A method of forming a transistor device includes providing a drift layer having a first conductivity type, forming a first region in the drift layer, the first region having a second conductivity type that is opposite the first conductivity type, forming a body layer on the drift layer including the first region, forming a source layer on the body layer, forming a trench in the source layer and the body layer above the first region and extending into the first region, forming a gate insulator on the inner sidewall of the trench, and forming a gate contact on the gate insulator.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 22, 2015
    Assignee: Cree, Inc.
    Inventors: Lin Cheng, Anant Agarwal, Vipindas Pala, John Palmour
  • Patent number: 9029945
    Abstract: A semiconductor device includes a drift layer having a first conductivity type, a well region in the drift layer having a second conductivity type opposite the first conductivity type, and a source region in the well region. The source region has the first conductivity type and defines a channel region in the well region. The source region includes a lateral source region adjacent the channel region and a plurality of source contact regions extending away from the lateral source region opposite the channel region. A body contact region having the second conductivity type is between at least two of the plurality of source contact regions and is in contact with the well region. A source ohmic contact overlaps at least one of the source contact regions and the body contact region. A minimum dimension of a source contact area of the semiconductor device is defined by an area of overlap between the source ohmic contact and the at least one source contact region.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: May 12, 2015
    Assignee: Cree, Inc.
    Inventors: Sei-Hyung Ryu, Doyle Craig Capell, Lin Cheng, Sarit Dhar, Charlotte Jonas, Anant Agarwal, John Palmour
  • Patent number: 9012984
    Abstract: A transistor device includes a drift layer having a first conductivity type, a body layer on the drift layer, the body layer having a second conductivity type opposite the first conductivity type, and a source region on the body layer, the source region having the first conductivity type. The device further includes a trench extending through the source region and the body layer and into the drift layer, a channel layer on the inner sidewall of the trench, the channel layer having the second conductivity type and having an inner sidewall opposite an inner sidewall of the trench, a gate insulator on the inner sidewall of the channel layer, and a gate contact on the gate insulator.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 21, 2015
    Assignee: Cree, Inc.
    Inventors: Lin Cheng, Anant Agarwal, John Palmour
  • Publication number: 20140264563
    Abstract: A transistor device includes a first conductivity type drift layer, a second conductivity type first region in the drift layer, a body layer having the second conductivity type on the drift layer including the first region, a source layer on the body layer, and a body contact region that extends through the source layer and the body layer and into the first region. The transistor device further includes a trench through the source layer and the body layer and extending into the drift layer adjacent the first region. The trench has an inner sidewall facing away from the first region. A gate insulator is on the inner sidewall of the trench, and a gate contact is on the gate insulator.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Cree, Inc.
    Inventors: Lin Cheng, Anant Agarwal, Vipindas Pala, John Palmour
  • Publication number: 20140264579
    Abstract: A method of forming a transistor device includes providing a drift layer having a first conductivity type and an upper surface, forming first regions in the drift layer and adjacent the upper surface, the first regions having a second conductivity type that is opposite the first conductivity type and being spaced apart from one another, forming a body layer on the drift layer including the source regions, forming spaced apart source regions in the body layer above respective ones of the first regions, forming a vertical conduction region in the body layer between the source regions, the vertical conduction region having the first conductivity type and defining channel regions in the body layer between the vertical conduction region and respective ones of the source regions, forming a gate insulator on the body layer, and forming a gate contact on the gate insulator.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Cree, Inc.
    Inventors: Vipindas Pala, Lin Cheng, Jason Henning, Anant Agarwal, John Palmour
  • Publication number: 20140264562
    Abstract: A transistor device includes a drift layer having a first conductivity type, a body layer on the drift layer, the body layer having a second conductivity type opposite the first conductivity type, and a source region on the body layer, the source region having the first conductivity type. The device further includes a trench extending through the source region and the body layer and into the drift layer, a channel layer on the inner sidewall of the trench, the channel layer having the second conductivity type and having an inner sidewall opposite an inner sidewall of the trench, a gate insulator on the inner sidewall of the channel layer, and a gate contact on the gate insulator.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Cree, Inc.
    Inventors: Lin Cheng, Anant Agarwal, John Palmour
  • Publication number: 20140264564
    Abstract: A method of forming a transistor device includes providing a drift layer having a first conductivity type, forming a first region in the drift layer, the first region having a second conductivity type that is opposite the first conductivity type, forming a body layer on the drift layer including the first region, forming a source layer on the body layer, forming a trench in the source layer and the body layer above the first region and extending into the first region, forming a gate insulator on the inner sidewall of the trench, and forming a gate contact on the gate insulator.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: Cree, Inc.
    Inventors: Lin Cheng, Anant Agarwal, Vipindas Pala, John Palmour
  • Publication number: 20120280252
    Abstract: A semiconductor device includes a drift layer having a first conductivity type, a well region in the drift layer having a second conductivity type opposite the first conductivity type, and a source region in the well region, The source region has the first conductivity type and defines a channel region in the well region. The source region includes a lateral source region adjacent the channel region and a plurality of source contact regions extending away from the lateral source region opposite the channel region. A body contact region having the second conductivity type is between at least two of the plurality of source contact regions and is in contact with the well region. A source ohmic contact overlaps at least one of the source contact regions and the body contact region. A minimum dimension of a source contact area of the semiconductor device is defined by an area of overlap between the source ohmic contact and the at least one source contact region.
    Type: Application
    Filed: May 6, 2011
    Publication date: November 8, 2012
    Inventors: Sei-Hyung Ryu, Doyle Craig Capell, Lin Cheng, Sarit Dhar, Charlotte Jonas, Anant Agarwal, John Palmour
  • Publication number: 20120280270
    Abstract: A semiconductor device includes a drift layer having a first conductivity type, a well region in the drift layer having a second conductivity type opposite the first conductivity type, and a source region in the well region, The source region has the first conductivity type and defines a channel region in the well region. The source region includes a lateral source region adjacent the channel region and a plurality of source contact regions extending away from the lateral source region opposite the channel region. A body contact region having the second conductivity type is between at least two of the plurality of source contact regions and is in contact with the well region. A source ohmic contact overlaps at least one of the source contact regions and the body contact region. A minimum dimension of a source contact area of the semiconductor device is defined by an area of overlap between the source ohmic contact and the at least one source contact region.
    Type: Application
    Filed: May 16, 2011
    Publication date: November 8, 2012
    Inventors: Sei-Hyung Ryu, Doyle Craig Capell, Lin Cheng, Sarit Dhar, Charlotte Jonas, Anant Agarwal, John Palmour
  • Publication number: 20060261346
    Abstract: High voltage silicon carbide (SiC) devices, for example, thyristors, are provided. A first SiC layer having a first conductivity type is provided on a first surface of a voltage blocking SiC substrate having a second conductivity type. A first region of SiC is provided on the first SiC layer and has the second conductivity type. A second region of SiC is provided in the first SiC layer, has the first conductivity type and is adjacent to the first region of SiC. A second SiC layer having the first conductivity type is provided on a second surface of the voltage blocking SiC substrate. A third region of SiC is provided on the second SiC layer and has the second conductivity type. A fourth region of SiC is provided in the second SiC layer, has the first conductivity type and is adjacent to the third region of SiC. First and second contacts are provided on the first and third regions of SiC, respectively. Related methods of fabricating high voltage SiC devices are also provided.
    Type: Application
    Filed: May 18, 2005
    Publication date: November 23, 2006
    Inventors: Sei-Hyung Ryu, Jason Jenny, Mrinal Das, Anant Agarwal, John Palmour, Hudson Hobgood
  • Publication number: 20060261347
    Abstract: Silicon carbide high voltage semiconductor devices and methods of fabricating such devices are provided. The devices include a voltage blocking substrate. Insulated gate bipolar transistors are provided that have a voltage blocking substrate. Planar and beveled edge termination may be provided.
    Type: Application
    Filed: May 18, 2005
    Publication date: November 23, 2006
    Inventors: Sei-Hyung Ryu, Jason Jenny, Mrinal Das, Hudson Hobgood, Anant Agarwal, John Palmour