Patents by Inventor John Passmore

John Passmore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10752815
    Abstract: A hot-melt formulation includes a butene-1-co-hexene-1 copolymer formed from butene-1 and hexene-1 monomers synthesized using a supported Ziegler-Natta catalyst reacted with an organometallic cocatalyst, a styrenic block copolymer with less than 15 percent bound styrene, a high melt viscosity metallocene catalyzed polyolefin, a high melt viscosity polypropylene with a melt viscosity above 18,000 cps, and a low molecular weight polyethylene wax, wherein the melt viscosity of the wax is less than 1,000 centipoise at a temperature of 350 degrees Fahrenheit.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: August 25, 2020
    Assignee: REXTAC LLC
    Inventors: Andres Sustic, Nick Fowler, John Passmore
  • Patent number: 10738222
    Abstract: A method to make a hot-melt polymer formulation with from 50 wt % to 100 wt % of a propylene-co-butene-1-co-hexene-1 terpolymer or a propylene-co-hexene-1 copolymer, each polymer made using a metal chloride supported Ziegler-Natta catalyst, at a process temperature between about 130 degrees Fahrenheit and about 200 degrees Fahrenheit and at a reactor pressure sufficient to maintain the propylene in a liquid phase without solvent; using 1 wt % to 20 wt % of at least one of: a metallocene-catalyst made polymer; a homopolymer of propylene with 0.1%-5% functionality; and a styrene block copolymer; and wherein the melt viscosity of the terpolymer or copolymer formulation is controlled by addition of hydrogen gas as a chain transfer agent.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: August 11, 2020
    Assignee: REXTAC, LLC
    Inventors: Andres Sustic, Nick Fowler, John Passmore, John J. Decair
  • Publication number: 20200109221
    Abstract: A method to make a high melt strength amorphous poly alpha olefin (APAO) includes blending APAO with a free radical initiator using a residence time from 0.1 minutes to 10 minutes at a temperature range from 300 degrees Fahrenheit to 400 degrees Fahrenheit, thereby forming an intermediate. A graftable monomer may then be added to the intermediate in a ratio from 0.1:100 to 2:100 at a temperature range from 225 degrees Fahrenheit to 400 degrees Fahrenheit using a residence time from 0.1 to 20 minutes, thereby forming a functionalized APAO. A multifunctional monomer in an amount ranging from 0.1% to 5% by weight of the functionalized APAO can be added to the functionalized APAO for 0.1 to 20 minutes at 200 to 400 degrees Fahrenheit, thereby forming a cross-linkable APAO. An acid neutralizer may be added to initiate crosslinking, making a crosslinked APAO with various degrees of crosslinking as observed by the changes in the melt viscosity.
    Type: Application
    Filed: October 3, 2019
    Publication date: April 9, 2020
    Inventors: Nick Fowler, Andres Sustic, John Passmore, John Joseph Decair
  • Publication number: 20190367784
    Abstract: A hot-melt formulation includes a butene-1-co-hexene-1 copolymer formed from butene-1 and hexene-1 monomers synthesized using a supported Ziegler-Natta catalyst reacted with an organometallic cocatalyst, a styrenic block copolymer with less than 15 percent bound styrene, a high melt viscosity metallocene catalyzed polyolefin, a high melt viscosity polypropylene with a melt viscosity above 18,000 cps, and a low molecular weight polyethylene wax, wherein the melt viscosity of the wax is less than 1,000 centipoise at a temperature of 350 degrees Fahrenheit.
    Type: Application
    Filed: August 13, 2019
    Publication date: December 5, 2019
    Inventors: Andres Sustic, Nick Fowler, John Passmore
  • Patent number: 10421886
    Abstract: A hot-melt adjuvant-free formulation includes a butene-1-co-hexene-1 copolymer formed from butene-1 and hexene-1 monomers with a supported Ziegler-Natta catalyst, a styrenic block copolymer with less than 15 percent styrene, a high melt flow index metallocene, a high melt flow rate polypropylene with a melt flow above 18000 cps, and a low molecular weight polyethylene wax, wherein the molecular weight is less than 1000 centipoise at a temperature of 350 degrees Fahrenheit.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: September 24, 2019
    Inventors: Andres Sustic, Nick Fowler, John Passmore
  • Publication number: 20190241774
    Abstract: A method to make a hot-melt polymer formulation with from 50 wt % to 100 wt % of a propylene-co-butene-1-co-hexene-1 terpolymer or a propylene-co-hexene-1 copolymer, each polymer made using a metal chloride supported Ziegler-Natta catalyst, at a process temperature between about 130 degrees Fahrenheit and about 200 degrees Fahrenheit and at a reactor pressure sufficient to maintain the propylene in a liquid phase without solvent; using 1 wt % to 20 wt % of at least one of: a metallocene-catalyst made polymer; a homopolymer of propylene with 0.1%-5% functionality; and a styrene block copolymer; and wherein the melt viscosity of the terpolymer or copolymer formulation is controlled by addition of hydrogen gas as a chain transfer agent.
    Type: Application
    Filed: April 15, 2019
    Publication date: August 8, 2019
    Inventors: Andres Sustic, Nick Fowler, John Passmore, John J. Decair
  • Publication number: 20190233685
    Abstract: A method to make a hot-melt polymer formulation with from 50 wt % to 100 wt % of a propylene-co-butene-1-co-hexene-1 terpolymer or a propylene-co-hexene-1 copolymer, each polymer made using a metal chloride supported Ziegler-Natta catalyst, at a process temperature between about 130 degrees Fahrenheit and about 175 degrees Fahrenheit and at a reactor pressure sufficient to maintain the propylene in a liquid phase without solvent; using 1 wt % to 20 wt % of at least one of: a metallocene polymer; a homopolymer of propylene with 0.1%-5% functionality; and a styrene block copolymer; and wherein the terpolymer or copolymer formulation is controlled by addition of a hydrogen gas as a chain transfer agent.
    Type: Application
    Filed: April 5, 2019
    Publication date: August 1, 2019
    Inventors: Nick Fowler, Andres Sustic, John Passmore, John J. Decair
  • Patent number: 10266731
    Abstract: A hot melt adhesive formulation includes 60 to 99 wt. % of an amorphous propylene-co-hexene-1 polymer component based on the total weight of the hot melt adhesive without the use of flammable solvents, 20 to 80 wt % of hexene-1 co-monomer based on the total weight of the amorphous propylene-co-hexene-1 copolymer component, 20 to 80 wt. % of a propylene co-monomer based on the total weight of the amorphous propylene-co-hexene-1 copolymer component, and from 1 to 40 wt. % of a co-adjuvant based on the total weight of the hot melt adhesive. The hot melt adhesive formulation has rolling ball tack from 2 to 50 centimeters at ambient temperature after conditioning at ambient temperatures for 24 hours. The hexene-1 monomer to propylene monomer ratios are from 4:1 to 1:4.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: April 23, 2019
    Inventors: Andres Sustic, Nick Fowler, John Passmore
  • Publication number: 20190071592
    Abstract: A hot-melt adjuvant-free formulation includes a butene-1-co-hexene-1 copolymer formed from butene-1 and hexene-1 monomers with a supported Ziegler-Natta catalyst, a styrenic block copolymer with less than 15 percent styrene, a high melt flow index metallocene, a high melt flow rate polypropylene with a melt flow above 18000 cps, and a low molecular weight polyethylene wax, wherein the molecular weight is less than 1000 centipoise at a temperature of 350 degrees Fahrenheit.
    Type: Application
    Filed: October 8, 2018
    Publication date: March 7, 2019
    Inventors: Andres Sustic, Nick Fowler, John Passmore
  • Publication number: 20190002742
    Abstract: A hot melt adhesive formulation includes 60 to 99 wt. of an amorphous propylene-co-hexene-1 polymer component based on the total weight of the hot melt adhesive without the use of flammable solvents, 20 to 80 wt % of hexene-1 co-monomer based on the total weight of the amorphous propylene-co-hexene-1 copolymer component, 20 to 80 wt. % of a propylene co-monomer based on the total weight of the amorphous propylene-co-hexene-1 copolymer component, and from 1 to 40 wt. % of a co-adjuvant based on the total weight of the hot melt adhesive. The hot melt adhesive formulation has rolling ball tack from 2 to 50 centimeters at ambient temperature after conditioning at ambient temperatures for 24 hours. The hexene-1 monomer to propylene monomer ratios are from 4:1 to 1:4.
    Type: Application
    Filed: August 24, 2018
    Publication date: January 3, 2019
    Inventors: Andres Sustic, Nick Fowler, John Passmore
  • Publication number: 20170292047
    Abstract: Propylene-co-hexene-1-co-butene-1 terpolymers, made either with or without an in-reactor-added organosilicon external donor, are used in the formulation of improved-performance, APAO-based, hot melt adhesives. The addition of an external donor during the manufacture of hexene-1 based amorphous polyalpha-olefins (APAO's) results in products having enhanced physical and mechanical properties compared to similar adhesive products made without the addition of the external donor.
    Type: Application
    Filed: April 12, 2017
    Publication date: October 12, 2017
    Inventors: Andres Sustic, John Passmore, Nick Fowler, John J. DeCair
  • Publication number: 20080093226
    Abstract: Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes such ammonia. An environmental control system employing nanoelectronic sensors is described. A personnel safety system configured as a disposable badge employing nanoelectronic sensors is described. A method of dynamic sampling and exposure of a sensor providing a number of operational advantages is described.
    Type: Application
    Filed: December 8, 2006
    Publication date: April 24, 2008
    Inventors: Mikhail Briman, Craig Bryant, Ying-Lan Chang, Jean-Christophe Gabriel, Shripal Gandhi, Bradley Johnson, Willem-Jan Ouborg, John Passmore, Kastooriranganathan Ramakrishnan, Sergei Skarupo, Alexander Star, Christian Valcke
  • Publication number: 20080021339
    Abstract: Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes such as anesthesia gases, CO2 and the like in human breath. An integrated monitor system and disposable sensor unit is described which permits a number of different anesthetic agents to be identified and monitored, as well as concurrent monitoring of other breath species, such as CO2. The sensor unit may be configured to be compact, light weight, and inexpensive. Wireless embodiments provide such enhancements as remote monitoring. A simulator system for modeling the contents and conditions of human inhalation and exhalation with a selected mixture of a treatment agent is also described, particularly suited to the testing of sensors to be used in airway sampling.
    Type: Application
    Filed: October 26, 2006
    Publication date: January 24, 2008
    Inventors: Jean-Christophe Gabriel, Vikram Joshi, John Passmore, Sergei Skarupo, Alexander Star, Christian Valcke
  • Publication number: 20070132043
    Abstract: Embodiments of nanoelectronic sensors are described, including sensors for detecting analytes inorganic gases, organic vapors, biomolecules, viruses and the like. A number of embodiments of capacitive sensors having alternative architectures are described. Particular examples include integrated cell membranes and membrane-like structures in nanoelectronic sensors.
    Type: Application
    Filed: April 6, 2006
    Publication date: June 14, 2007
    Inventors: Keith Bradley, Ying-Lan Chang, Jean-Christophe Gabriel, John Passmore, Sergei Skarupo, Eugene Tu, Christian Valcke
  • Publication number: 20070048181
    Abstract: An electronic system and method for detecting analytes, such as carbon dioxide, is provided, using an improved nanostructure sensor (CO2 sensor). The CO2 sensor may comprise a substrate and a nanostructure, such as a one or more carbon nanotubes disposed over the substrate (e.g., as a network). One or more conductive elements may electrically communicate with the nanostructure. A counter or gate electrode may be positioned adjacent the nanostructure. A functionalization material reactive with carbon dioxide may be included, either disposed in contact with the nanostructure or isolated by a dielectric. The sensor may be connected to a circuit responsive to changes in CO2 concentration in the environment. Embodiments are described of medical sensing systems including one or more CO2 sensors. One embodiment comprises a breath sampling cannula which is connected to a sensor unit.
    Type: Application
    Filed: July 18, 2006
    Publication date: March 1, 2007
    Inventors: Daniel Chang, Ying-Lan Chang, Jean-Christophe Gabriel, Vikram Joshi, William Mickelson, Joseph Niemann, John Passmore, Alexander Star, Christian Valcke
  • Publication number: 20060263255
    Abstract: A new sensing technology for chemical/biomolecular sensors is provided. One such sensor detects molecular hydrogen (H2) using nanoelectronic components. A tiny, low-cost nanosensor chip can offer: (i) performance that matches or exceeds that of existing technology, (ii) plug-and-play simplicity with both digital and analog control systems, and (ii) the small size and low power consumption needed for wireless integration.
    Type: Application
    Filed: February 14, 2006
    Publication date: November 23, 2006
    Inventors: Tzong-Ru Han, Alexander Star, Jean-Christophe Gabriel, Sergei Skarupo, John Passmore, Philip Collins, Keith Bradley, Darin Olson
  • Publication number: 20060055392
    Abstract: A portable sensor device incorporates a low-power, nanostructure sensor coupled to a wireless transmitter. The sensor uses a nanostructure conducting channel, such as a nanotube network, that is functionalized to respond to a selected analyte. A measurement circuit connected to the sensor determines a change in the electrical characteristic of the sensor, from which information concerning the present or absence of the analyte may be determined. The portable sensor device may include a portable power source, such as a battery. It may further include a transmitter for wirelessly transmitting data to a base station.
    Type: Application
    Filed: April 20, 2005
    Publication date: March 16, 2006
    Inventors: John Passmore, Jean-Christophe Gabriel, Alexander Star, Vikram Joshi, Sergei Skarupo