Patents by Inventor John Patrick Baker

John Patrick Baker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240115418
    Abstract: Devices, systems and methods for removing heat from subcutaneously disposed lipid-rich cells are disclosed. In selected embodiments, suction and/or heat removal sources are coupled to an applicator. The applicator includes a flexible portion and a rigid portion. The rigid portion includes a thermally conductive plate and a frame coupling the thermally conductive plate and the flexible portion. An interior cavity of the applicator is in fluid communication with the suction source, and the frame maintains contiguous engagement between the heat removal source and the thermally conductive plate.
    Type: Application
    Filed: August 18, 2023
    Publication date: April 11, 2024
    Inventors: Mark William Baker, Joseph Coakley, Paul William Martens, Albert L. Ollerdessen, William Patrick Pennybacker, Jesse N. Rosen, Peter Yee, John W. Allison
  • Patent number: 11850842
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device holds a print medium against the movable support surface by vacuum suction and transports the print medium through the deposition region. The air flow control system comprises an air supply unit comprising air flow guide structure extending into the opening of the carrier plate between the carrier plate and the printhead to flow air through the opening. The air flow control system controls the air supply unit to selectively flow the air based on a location of a print medium relative to the printhead.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: December 26, 2023
    Assignee: XEROX CORPORATION
    Inventors: Patrick Jun Howe, John Patrick Baker, Brian M. Balthasar, Glenn Batchelor, Anthony Salvatore Condello, Ali R. Dergham, Timothy P. Foley, Douglas K. Herrmann, Richard A. Kalb, Peter John Knausdorf, Jason M. LeFevre, Jack T. Lestrange, Chu-Heng Liu, Paul J. McConville, Seemit Praharaj, Palghat S. Ramesh, Joseph C. Sheflin, Emmett James Spence, Robert Jian Zhang, Megan Zielenski
  • Patent number: 11772391
    Abstract: A printing system comprises a media transport device which holds print media, such as paper, against a movable support surface, such as a belt, by vacuum suction through holes in the media transport device and transports the print media though a deposition region of one or more printheads, which deposit a print fluid, such as ink, on the print media. The printing system comprises an airflow control device comprising one or more dampers that are moveable in a cross-process direction between an undeployed configuration and a deployed configuration, each damper blocking at least one row of the holes in the deployed configuration. The airflow control device also comprises one or more actuators to move the damper(s). The actuator(s) are controlled to selectively move the damper(s) between the undeployed and deployed configuration based on a position of an inter-media zone between adjacent print media held against the movable support surface.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: October 3, 2023
    Assignee: Xerox Corporation
    Inventors: Megan Zielenski, John Patrick Baker, Brian M. Balthasar, Emmett James Spence, Robert Jian Zhang
  • Patent number: 11724531
    Abstract: Disclosed herein is a substrate cooling unit for use with a duplex aqueous ink jet image forming device. The substrate cooling unit includes a first transport belt that is in contact with a portion of an outer surface of the first cooling roll to substantially sandwich individual sheets of image receiving media between a first cooling roll and the first transport belt. The substrate cooling unit includes a second cooling roll positioned downstream of the first cooling roll in a process direction and a second transport belt that is in contact with a portion of an outer surface of the second cooling roll to substantially sandwich the individual sheets of image receiving media between the second cooling roll and the second transport belt. The second transport belt includes a bottom layer of woven or non-woven fibers and a top rubber layer.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: August 15, 2023
    Assignee: XEROX CORPORATION
    Inventors: John Patrick Baker, Varun Sambhy, Santokh S. Badesha, David Scott Derleth, Piotr Sokolowski
  • Patent number: 11697296
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device comprises a movable support surface to transport a print medium along a process direction through the deposition region, the media transport device holding the print medium against the movable support surface by vacuum suction. The air flow control system is arranged to selectively flow air through the opening of the carrier plate between the carrier plate and the printhead based on a location of a print medium transported by the media transport device relative to the printhead.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: July 11, 2023
    Assignee: Xerox Corporation
    Inventors: Douglas K. Herrmann, Linn C. Hoover, Patrick Jun Howe, Joseph C. Sheflin, Robert Jian Zhang, John Patrick Baker, Brian M. Balthasar, Glenn Batchelor, Anthony Salvatore Condello, Ali R. Dergham, Timothy P. Foley, Richard A. Kalb, Peter John Knausdorf, Jason M. LeFevre, Jack T. Lestrange, Chu-Heng Liu, Paul J. McConville, Seemit Praharaj, Palghat S. Ramesh, Erwin Ruiz, Emmett James Spence, Rachel Lynn Tanchak, Kareem Tawil, Carlos M. Terrero, Megan Zielenski
  • Publication number: 20230131547
    Abstract: Disclosed herein is a substrate cooling unit for use with a duplex aqueous ink jet image forming device. The substrate cooling unit including a first cooling roll. a first transport belt, a second cooling roll positioned downstream of the first cooling roll in a process direction and a second transport belt. The first and second transports belts include a bottom layer of a fiber mesh impregnated with a polydimethylsiloxane, where the fiber mesh is selected from cotton, polyester, and nylon. The first and second transport belts include an optional intermediate adhesive layer and an optional top layer of silicone having an extractable level of less than 4 percent. The substrate cooling unit includes an invertor.
    Type: Application
    Filed: October 26, 2021
    Publication date: April 27, 2023
    Inventors: Varun Sambhy, John Patrick Baker, Santokh Singh Badesha, David Scott Derleth, Piotr Sokolowski
  • Publication number: 20220402286
    Abstract: Disclosed herein is a substrate cooling unit for use with a duplex aqueous ink jet image forming device. The substrate cooling unit includes a first transport belt that is in contact with a portion of an outer surface of the first cooling roll to substantially sandwich individual sheets of image receiving media between a first cooling roll and the first transport belt. The substrate cooling unit includes a second cooling roll positioned downstream of the first cooling roll in a process direction and a second transport belt that is in contact with a portion of an outer surface of the second cooling roll to substantially sandwich the individual sheets of image receiving media between the second cooling roll and the second transport belt. The second transport belt includes a bottom layer of woven or non-woven fibers and a top rubber layer.
    Type: Application
    Filed: June 21, 2021
    Publication date: December 22, 2022
    Inventors: John Patrick Baker, Varun Sambhy, Santokh S. Badesha, David Scott Derleth, Piotr Sokolowski
  • Publication number: 20220314649
    Abstract: A printing system comprises an ink deposition assembly, a media transport device, and an airflow control system. The ink deposition assembly comprises printheads to deposit a print fluid, such as ink, on print media, such as paper, transported through a deposition region. The media transport device holds the print media against a movable support surface, such as a belt, by vacuum suction through holes in the media transport device and transports the print media though the deposition region. The airflow control system comprises one or more valves that are actuatable between an open state and a closed state, each valve blocking a subset of the holes in the closed state. The airflow control system also comprises one or more actuators to actuate the valve(s). The actuator(s) selectively actuate the valve(s) between the open and closed states based on a position of an inter-media zone between adjacent print media.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Applicant: XEROX CORPORATION
    Inventors: John Patrick BAKER, Brian M. BALTHASAR, Emmett James SPENCE, Robert Jian ZHANG, Megan ZIELENSKI
  • Publication number: 20220314648
    Abstract: A printing system comprises a media transport device which holds print media, such as paper, against a movable support surface, such as a belt, by vacuum suction through holes in the media transport device and transports the print media though a deposition region of one or more printheads, which deposit a print fluid, such as ink, on the print media. The printing system comprises an airflow control device comprising one or more dampers that are moveable in a cross-process direction between an undeployed configuration and a deployed configuration, each damper blocking at least one row of the holes in the deployed configuration. The airflow control device also comprises one or more actuators to move the damper(s). The actuator(s) are controlled to selectively move the damper(s) between the undeployed and deployed configuration based on a position of an inter-media zone between adjacent print media held against the movable support surface.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Applicant: XEROX CORPORATION
    Inventors: Megan ZIELENSKI, John Patrick BAKER, Brian M. BALTHASAR, Emmett James SPENCE, Robert Jian ZHANG
  • Publication number: 20220314655
    Abstract: A printing system comprises an ink deposition assembly and a media transport assembly. The ink deposition assembly comprises a printhead arranged to eject a print fluid to a deposition region of the ink deposition assembly. The media transport assembly comprises a vacuum source and a movable support surface. The movable support surface comprises valves having holes through the media support surface. The media transport assembly is configured to hold one or more print media against the movable support surface by vacuum suction communicated from the vacuum source through valves. The valves are each configured to transition between a closed state in which airflow through the hole of the respective valve is prevented and an open state in which airflow through the hole of the respective valve is allowed.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 6, 2022
    Applicant: XEROX CORPORATION
    Inventors: Brian M. BALTHASAR, John Patrick BAKER, Emmett James SPENCE, Robert Jian ZHANG, Megan ZIELENSKI
  • Publication number: 20220305819
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device holds a print medium against the movable support surface by vacuum suction and transports the print medium through the deposition region. The air flow control system comprises an air supply unit comprising air flow guide structure extending into the opening of the carrier plate between the carrier plate and the printhead to flow air through the opening. The air flow control system controls the air supply unit to selectively flow the air based on a location of a print medium relative to the printhead.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Applicant: XEROX CORPORATION
    Inventors: Patrick Jun HOWE, John Patrick BAKER, Brian M. BALTHASAR, Glenn BATCHELOR, Anthony Salvatore CONDELLO, Ali R. DERGHAM, Timothy P. FOLEY, Douglas K. HERRMANN, Richard A. KALB, Peter John KNAUSDORF, Jason M. LeFEVRE, Jack T. LESTRANGE, Chu-Heng LIU, Paul J. McCONVILLE, Seemit PRAHARAJ, Palghat S. RAMESH, Joseph C. SHEFLIN, Emmett James SPENCE, Robert Jian ZHANG, Megan ZIELENSKI
  • Publication number: 20220305815
    Abstract: A printing system comprises a print fluid deposition assembly, a media transport device, and an air flow control system. The print fluid deposition assembly comprises a carrier plate and a printhead arranged to eject a print fluid through an opening of the carrier plate to a deposition region. The media transport device comprises a movable support surface to transport a print medium along a process direction through the deposition region, the media transport device holding the print medium against the movable support surface by vacuum suction. The air flow control system is arranged to selectively flow air through the opening of the carrier plate between the carrier plate and the printhead based on a location of a print medium transported by the media transport device relative to the printhead.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 29, 2022
    Applicant: XEROX CORPORATION
    Inventors: Douglas K. HERRMANN, Linn C. HOOVER, Patrick Jun HOWE, Joseph C. SHEFLIN, Robert Jian ZHANG, John Patrick BAKER, Brian M. BALTHASAR, Glenn BATCHELOR, Anthony Salvatore CONDELLO, Ali R. DERGHAM, Timothy P. FOLEY, Richard A. KALB, Peter John KNAUSDORF, Jason M. LeFEVRE, Jack T. LESTRANGE, Chu-Heng LIU, Paul J. McCONVILLE, Seemit PRAHARAJ, Palghat S. RAMESH, Erwin RUIZ, Emmett James SPENCE, Rachel Lynn TANCHAK, Kareem TAWIL, Carlos M. TERRERO, Megan ZIELENSKI
  • Patent number: 8449301
    Abstract: Methods and systems are provided for assessing a medical ultrasound imaging operator's competency. The system includes a console containing a plurality of virtual controls, such as knobs, for simulating a real-life examination of a patient. The images created by the system change dynamically as the different virtual knobs on the console are adjusted. The console provides a certification examination for a medical ultrasound imaging operator. The console also includes a process to assess the medical ultrasound imaging operator's competency. The process determines a plurality of scores in order to assess the competency of the medical ultrasound imaging operator.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: May 28, 2013
    Assignee: American Registry for Diagnostic Medical Sonography, Inc.
    Inventors: Dale Ronald Cyr, Paul Anthony Cardullo, Paul Rufus Wagner, Eileen Mae Nemec, Jo Ann Lamb, Bruce Kevin Daniels, Wayne Robert Hedrick, Ellen Ruth Julian, Patricia Lucas Grier, John Patrick Baker, Clarence Lewis Chaffee, Jr.
  • Publication number: 20100203487
    Abstract: Methods and systems are provided for assessing a medical ultrasound imaging operator's competency. The system includes a console containing a plurality of virtual controls, such as knobs, for simulating a real-life examination of a patient. The images created by the system change dynamically as the different virtual knobs on the console are adjusted. The console provides a certification examination for a medical ultrasound imaging operator. The console also includes a process to assess the medical ultrasound imaging operator's competency. The process determines a plurality of scores in order to assess the competency of the medical ultrasound imaging operator.
    Type: Application
    Filed: February 12, 2009
    Publication date: August 12, 2010
    Inventors: Dale Ronald Cyr, Paul Anthony Cardullo, Paul Rufus Wagner, Eileen Mae Nemec, Jo Ann Lamb, Bruce Kevin Daniels, Wayne Robert Hedrick, Ellen Ruth Julian, Patricia Lucas Grier, John Patrick Baker, Clarence Lewis Chaffee, JR.