Patents by Inventor John Paul C. BORGONIA

John Paul C. BORGONIA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220266338
    Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe-Co alloy material (e.g., the Fe-Co-V alloy Hiperco-50(R)). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.
    Type: Application
    Filed: May 9, 2022
    Publication date: August 25, 2022
    Applicant: California Institute of Technology
    Inventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
  • Patent number: 11351613
    Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe—Co alloy material (e.g., the Fe—Co—V alloy Hiperco-50®). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: June 7, 2022
    Assignee: California Institute of Technology
    Inventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
  • Publication number: 20190366435
    Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe—Co alloy material (e.g., the Fe—Co—V alloy Hiperco-50®). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.
    Type: Application
    Filed: June 3, 2019
    Publication date: December 5, 2019
    Applicant: California Institute of Technology
    Inventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
  • Patent number: 10487934
    Abstract: Systems and methods in accordance with embodiments of the invention efficaciously implement robust gearbox housings. In one embodiment, a method of fabricating a gearbox housing includes: providing an alloy composition from which the gearbox housing will be fabricated from; casting the alloy composition around a solid body so as to form a part characterized by the inclusion of a cavity, where the cast part includes a metallic glass-based material; and nondestructively separating the cast part from the solid body.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: November 26, 2019
    Assignee: California Institute of Technology
    Inventors: Andrew Kennett, Douglas C. Hofmann, John Paul C. Borgonia
  • Patent number: 10471652
    Abstract: Systems and methods in accordance with embodiments of the invention implement additive manufacturing techniques that employ different sets of deposition characteristics and/or material formation characteristics during the additive manufacture of an object so as to strategically build up the object. In many embodiments, material used to build up an object is deposited at different deposition rates during the additive manufacture of the object, and the object is thereby strategically built up. In one embodiment, a method of additively manufacturing an object includes: depositing material onto a surface at a first deposition rate so as to define a first region of the object to be additively manufactured; and depositing material onto a surface at a second deposition rate so as to define a second region of the object to be additively manufactured; where the second deposition rate is different from the first deposition rate.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: November 12, 2019
    Assignee: California Institute of Technology
    Inventors: Douglas C. Hofmann, John Paul C. Borgonia
  • Publication number: 20190022923
    Abstract: Systems and methods in accordance with embodiments of the invention implement additive manufacturing techniques that employ different sets of deposition characteristics and/or material formation characteristics during the additive manufacture of an object so as to strategically build up the object. In many embodiments, material used to build up an object is deposited at different deposition rates during the additive manufacture of the object, and the object is thereby strategically built up. In one embodiment, a method of additively manufacturing an object includes: depositing material onto a surface at a first deposition rate so as to define a first region of the object to be additively manufactured; and depositing material onto a surface at a second deposition rate so as to define a second region of the object to be additively manufactured; where the second deposition rate is different from the first deposition rate.
    Type: Application
    Filed: September 24, 2018
    Publication date: January 24, 2019
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, John Paul C. Borgonia
  • Patent number: 10081136
    Abstract: Systems and methods in accordance with embodiments of the invention implement additive manufacturing techniques that employ different sets of deposition characteristics and/or material formation characteristics during the additive manufacture of an object so as to strategically build up the object. In many embodiments, material used to build up an object is deposited at different deposition rates during the additive manufacture of the object, and the object is thereby strategically built up. In one embodiment, a method of additively manufacturing an object includes: depositing material onto a surface at a first deposition rate so as to define a first region of the object to be additively manufactured; and depositing material onto a surface at a second deposition rate so as to define a second region of the object to be additively manufactured; where the second deposition rate is different from the first deposition rate.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: September 25, 2018
    Assignee: California Institute of Technology
    Inventors: Douglas C. Hofmann, John Paul C. Borgonia
  • Publication number: 20160361897
    Abstract: Systems and methods in accordance with embodiments of the invention implement robust metallic glass-based fiber metal laminates. In one embodiment, a robust metallic glass-based fiber metal laminate includes: a first layer including a fiber-reinforced composite material; and a second layer including a metallic glass-based material; where the metallic glass-based material is based on at least one non-ferromagnetic element.
    Type: Application
    Filed: March 17, 2015
    Publication date: December 15, 2016
    Inventors: Douglas C. Hofmann, John Paul C. Borgonia, Gregory S. Agnes, Samuel C. Bradford, Eric Oakes, Kristina Rojdev, Steve Nutt, Lee Hamill
  • Patent number: 9512894
    Abstract: An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: December 6, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Nicholas Boechler, Robert Peter Dillon, Chiara Daraio, Gregory L. Davis, Andrew A. Shapiro, John Paul C. Borgonia, Daniel Louis Kahn
  • Publication number: 20160178047
    Abstract: Systems and methods in accordance with embodiments of the invention efficaciously implement robust gearbox housings. In one embodiment, a method of fabricating a gearbox housing includes: providing an alloy composition from which the gearbox housing will be fabricated from; casting the alloy composition around a solid body so as to form a part characterized by the inclusion of a cavity, where the cast part includes a metallic glass-based material; and nondestructively separating the cast part from the solid body.
    Type: Application
    Filed: December 16, 2015
    Publication date: June 23, 2016
    Applicant: California Institute of Technology
    Inventors: Andrew Kennett, Douglas C. Hofmann, John Paul C. Borgonia
  • Patent number: 9101979
    Abstract: Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: August 11, 2015
    Assignee: California Institute of Technology
    Inventors: Douglas C. Hofmann, John Paul C. Borgonia, Robert P. Dillon, Eric J. Suh, Jerry L. Mulder, Paul B. Gardner
  • Publication number: 20150014885
    Abstract: Systems and methods in accordance with embodiments of the invention implement additive manufacturing techniques that employ different sets of deposition characteristics and/or material formation characteristics during the additive manufacture of an object so as to strategically build up the object. In many embodiments, material used to build up an object is deposited at different deposition rates during the additive manufacture of the object, and the object is thereby strategically built up. In one embodiment, a method of additively manufacturing an object includes: depositing material onto a surface at a first deposition rate so as to define a first region of the object to be additively manufactured; and depositing material onto a surface at a second deposition rate so as to define a second region of the object to be additively manufactured; where the second deposition rate is different from the first deposition rate.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 15, 2015
    Applicant: California Institute of Technology
    Inventors: Douglas C. Hofmann, John Paul C. Borgonia
  • Publication number: 20140097562
    Abstract: An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.
    Type: Application
    Filed: March 27, 2013
    Publication date: April 10, 2014
    Inventors: Nicholas BOECHLER, Robert Peter DILLON, Chiara DARAIO, Gregory L. DAVIS, Andrew A. SHAPIRO, John Paul C. BORGONIA, Daniel Louis KAHN