Patents by Inventor John Paul Castelo Borgonia

John Paul Castelo Borgonia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11731196
    Abstract: Systems and methods of additively manufacturing multi-material electromagnetic shields are described. Additive manufacturing processes use co-deposition to incorporate multiple materials and/or microstructures selected to achieve specified shield magnetic properties. Geometrically complex shields can be manufactured with alternating shielding materials optimized for the end use application. The microstructures of the printed shields can be tuned by optimizing the print parameters.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: August 22, 2023
    Assignee: California Institute of Technology
    Inventors: Samad A. Firdosy, Robert P. Dillon, Nicholas E. Ury, Katherine Dang, Joshua Berman, Pablo Narvaez, Vilupanur A. Ravi, John Paul Castelo Borgonia, Joelle T. Cooperrider, Bryan W. McEnerney, Andrew A. Shapiro-Scharlotta
  • Publication number: 20220203442
    Abstract: Systems and methods of additively manufacturing multi-material electromagnetic shields are described. Additive manufacturing processes use co-deposition to incorporate multiple materials and/or microstructures selected to achieve specified shield magnetic properties. Geometrically complex shields can be manufactured with alternating shielding materials optimized for the end use application. The microstructures of the printed shields can be tuned by optimizing the print parameters.
    Type: Application
    Filed: August 5, 2021
    Publication date: June 30, 2022
    Applicant: California Institute of Technology
    Inventors: Samad A. Firdosy, Robert P. Dillon, Nicholas E. Ury, Katherine Dang, Joshua Berman, Pablo Narvaez, Vilupanur A. Ravi, John Paul Castelo Borgonia, Joelle T. Cooperrider, Bryan W. McEnerney, Andrew A. Shapiro-Scharlotta
  • Patent number: 11077655
    Abstract: Printed textiles and related manufacturing methods are provided. Textile materials can include laced mesh fabrics made of rigid components. The laced mesh structures are designed for space applications, including but not limited to adaptive and foldable reflectors, capturing systems, debris and micrometeorite shielding, shading systems, sample capturing, and various other applications. The laced mesh structures are used in the generation of tailored, unique radio-frequency antennas and receivers that allow for active tuning/receiving capabilities. The tailored structure can also include multi-material systems mixing dielectric and conductive layers for enhanced, tunable transmission. Laced mesh structures can also be used for enhanced thermal control of components, with the ability to tailor thermal conductivity and emissivity, to create thermal engineered components via the generation of localized or global thermal response (e.g. zone thermal control).
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: August 3, 2021
    Assignee: California Institute of Technology
    Inventors: Raul Polit Casillas, Andrew A. Shapiro, John Paul Castelo Borgonia, Bryan William McEnerney
  • Publication number: 20180345651
    Abstract: Printed textiles and related manufacturing methods are provided. Textile materials can include laced mesh fabrics made of rigid components. The laced mesh structures are designed for space applications, including but not limited to adaptive and foldable reflectors, capturing systems, debris and micrometeorite shielding, shading systems, sample capturing, and various other applications. The laced mesh structures are used in the generation of tailored, unique radio-frequency antennas and receivers that allow for active tuning/receiving capabilities. The tailored structure can also include multi-material systems mixing dielectric and conductive layers for enhanced, tunable transmission. Laced mesh structures can also be used for enhanced thermal control of components, with the ability to tailor thermal conductivity and emissivity, to create thermal engineered components via the generation of localized or global thermal response (e.g. zone thermal control).
    Type: Application
    Filed: May 31, 2018
    Publication date: December 6, 2018
    Applicant: California Institute of Technology
    Inventors: Raul Polit Casillas, Andrew A. Shapiro, John Paul Castelo Borgonia, Bryan William McEnerney