Patents by Inventor John Perl, II

John Perl, II has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9358014
    Abstract: A liquid embolic delivery system is provided for trapping an injected liquid embolic composition to prevent the liquid embolic from solidifying or otherwise passing outside of an embolization area. The delivery system includes a catheter for delivery of a liquid embolic composition and a containment member positioned at a distal end of the catheter which is shaped to trap the liquid embolic composition delivered through the lumen of the catheter. The containment member is formed as a brush, nest, sponge, swab, flexible sack, or other shape into and around which the liquid embolic composition is injected. The liquid embolic composition is trapped or meshes with the containment member during solidification containing the liquid embolic and preventing the embolic composition from passing into the blood stream.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 7, 2016
    Assignee: Covidien LP
    Inventors: Andrew H. Cragg, Blair D. Walker, John Perl, II, Michael Jones, George Robert Greene, George Wallace, Richard J. Greff
  • Patent number: 8454649
    Abstract: A liquid embolic delivery system is provided for trapping an injected liquid embolic composition to prevent the liquid embolic from solidifying or otherwise passing outside of an embolization area. The delivery system includes a catheter for delivery of a liquid embolic composition and a containment member positioned at a distal end of the catheter which is shaped to trap the liquid embolic composition delivered through the lumen of the catheter. The containment member is formed as a brush, nest, sponge, swab, flexible sack, or other shape into and around which the liquid embolic composition is injected. The liquid embolic composition is trapped or meshes with the containment member during solidification containing the liquid embolic and preventing the embolic composition from passing into the blood stream.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: June 4, 2013
    Assignee: Covidien LP
    Inventors: Andrew H. Cragg, Blair D. Walker, John Perl, II, Michael Jones, George Robert Greene, George Wallace, Richard J. Greff
  • Publication number: 20110264073
    Abstract: A liquid embolic delivery system is provided for trapping an injected liquid embolic composition to prevent the liquid embolic from solidifying or otherwise passing outside of an embolization area. The delivery system includes a catheter for delivery of a liquid embolic composition and a containment member positioned at a distal end of the catheter which is shaped to trap the liquid embolic composition delivered through the lumen of the catheter. The containment member is formed as a brush, nest, sponge, swab, flexible sack, or other shape into and around which the liquid embolic composition is injected. The liquid embolic composition is trapped or meshes with the containment member during solidification containing the liquid embolic and preventing the embolic composition from passing into the blood stream.
    Type: Application
    Filed: June 2, 2011
    Publication date: October 27, 2011
    Inventors: Andrew H. Cragg, Blair D. Walker, John Perl, II, Michael Jones, George Robert Greene, George Wallace, Richard J. Greff
  • Patent number: 7976527
    Abstract: A liquid embolic delivery system is provided for trapping an injected liquid embolic composition to prevent the liquid embolic from solidifying or otherwise passing outside of an embolization area. The delivery system includes a catheter for delivery of a liquid embolic composition and a containment member positioned at a distal end of the catheter which is shaped to trap the liquid embolic composition delivered through the lumen of the catheter. The containment member is formed as a brush, nest, sponge, swab, flexible sack, or other shape into and around which the liquid embolic composition is injected. The liquid embolic composition is trapped or meshes with the containment member during solidification containing the liquid embolic and preventing the embolic composition from passing into the blood stream.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: July 12, 2011
    Assignee: Micro Therapeutics, Inc.
    Inventors: Andrew H. Cragg, Blair D. Walker, John Perl, II, Michael Jones, George R. Greene, George Wallace, Richard J. Greff
  • Patent number: 6511468
    Abstract: A liquid embolic delivery system is provided for trapping an injected liquid embolic composition to prevent the liquid embolic from solidifying or otherwise passing outside of an embolization area. The delivery system includes a catheter for delivery of a liquid embolic composition and a containment member positioned at a distal end of the catheter which is shaped to trap the liquid embolic composition delivered through the lumen of the catheter. The containment member is formed as a brush, nest, sponge, swab, flexible sack, or other shape into and around which the liquid embolic composition is injected. The liquid embolic composition is trapped or meshes with the containment member during solidification containing the liquid embolic and preventing the embolic composition from passing into the blood stream.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: January 28, 2003
    Assignee: Micro Therapeutics, Inc.
    Inventors: Andrew H. Cragg, Blair D. Walker, John Perl, II, Michael Jones, George Robert Greene, George Wallace, Richard J. Greff
  • Patent number: 6335384
    Abstract: Disclosed are methods useful for treating vascular lesions wherein a non-particulate agent such as a metal coil is introduced into a vascular site (e.g., an aneurysm cavity) in conjunction with an embolizing composition comprising a biocompatible polymer and a biocompatible solvent. The biocompatible solvent is miscible or soluble in blood and also solubilizes the polymer during delivery. The biocompatible polymer is selected to be soluble in the biocompatible solvent but insoluble in blood. Upon contact with the blood, the biocompatible solvent dissipates from the embolic composition whereupon the biocompatible polymer precipitates. Precipitation of the polymer in the presence of the non-particular agent permits the agent to act as a structural lattice for the growing polymer precipitate. In another embodiment, the biocompatible polymer composition can be replaced with a biocompatible prepolymer composition containing a biocompatible prepolymer.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: January 1, 2002
    Assignee: Micro Therapeutics, Inc.
    Inventors: Scott Evans, John Perl, II, Richard Greff
  • Patent number: 6281263
    Abstract: Disclosed are methods useful for treating vascular lesions wherein a non-particulate agent such as a metal coil is introduced into a vascular site (e.g., an aneurysm cavity) in conjunction with an embolizing composition comprising a biocompatible polymer and a biocompatible solvent. The biocompatible solvent is miscible or soluble in blood and also solubilizes the polymer during delivery. The biocompatible polymer is selected to be soluble in the biocompatible solvent but insoluble in blood. Upon contact with the blood, the biocompatible solvent dissipates from the embolic composition whereupon the biocompatible polymer precipitates. Precipitation of the polymer in the presence of the non-particulate agent permits the agent to act as a structural lattice for the growing polymer precipitate. In another embodiment, the biocompatible polymer composition can be replaced with a biocompatible prepolymer composition containing a biocompatible prepolymer.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: August 28, 2001
    Inventors: Scott Evans, John Perl, II, Richard Greff
  • Patent number: 6017977
    Abstract: Disclosed are methods useful for treating vascular lesions wherein a non-particulate agent such as a metal coil is introduced into a vascular site (e.g., an aneurysm cavity) in conjunction with an embolizing composition comprising a biocompatible polymer and a biocompatible solvent.The biocompatible solvent is miscible or soluble in blood and also solubilizes the polymer during delivery. The biocompatible polymer is selected to be soluble in the biocompatible solvent but insoluble in blood. Upon contact with the blood, the biocompatible solvent dissipates from the embolic composition whereupon the biocompatible polymer precipitates. Precipitation of the polymer in the presence of the non-particulate agent permits the agent to act as a structural lattice for the growing polymer precipitate.In another embodiment, the biocompatible polymer composition can be replaced with a biocompatible prepolymer composition containing a biocompatible prepolymer.
    Type: Grant
    Filed: June 4, 1997
    Date of Patent: January 25, 2000
    Assignee: Micro Therapeutics, Inc.
    Inventors: Scott Evans, John Perl, II, Richard Greff
  • Patent number: 5702361
    Abstract: Disclosed are methods useful for treating vascular lesions wherein a non-particulate agent such as a metal coil is introduced into a vascular site (e.g., an aneurysm cavity) in conjunction with an embolizing composition comprising a biocompatible polymer and a biocompatible solvent.The biocompatible solvent is miscible or soluble in blood and also solubilizes the polymer during delivery. The biocompatible polymer is selected to be soluble in the biocompatible solvent but insoluble in blood. Upon contact with the blood, the biocompatible solvent dissipates from the embolic composition whereupon the biocompatible polymer precipitates. Precipitation of the polymer in the presence of the non-particulate agent permits the agent to act as a structural lattice for the growing polymer precipitate.In another embodiment, the biocompatible polymer composition can be replaced with a biocompatible prepolymer composition containing a biocompatible prepolymer.
    Type: Grant
    Filed: January 31, 1996
    Date of Patent: December 30, 1997
    Assignee: Micro Therapeutics, Inc.
    Inventors: Scott Evans, John Perl, II, Richard Greff