Patents by Inventor John Pope

John Pope has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11519895
    Abstract: A method may include drilling a wellbore, the wellbore intersecting a shale formation at an interval of the shale formation and casing at least a portion of the wellbore. The method may also include perforating the casing at the interval to fluidly couple the interval and the wellbore, and liberating free and absorbed gas entrapped within the interval. In addition, the method may include solubilizing in the wellbore fluid the free and absorbed gas, forming a plume comprising solubilized gas, and determining an identity and amount of solubilized gas in the plume.
    Type: Grant
    Filed: July 21, 2017
    Date of Patent: December 6, 2022
    Assignee: GAS SENSING TECHNOLOGY CORP.
    Inventors: Quentin Morgan, John Pope
  • Publication number: 20220381122
    Abstract: Injecting CO2 that is diluted within water, into a coal seam, which allows for the sequestering and control of downhole CO2 within connected fractures without damaging the subterranean formation.
    Type: Application
    Filed: August 12, 2022
    Publication date: December 1, 2022
    Inventors: John POPE, Wade A. BARD
  • Patent number: 10732043
    Abstract: Methods and apparatus suitable for quickly and accurately measuring 13C levels and supporting data in an aqueous fluid reservoir. Interpreting the resulting data to indicate key factors regarding a reservoir and completion methods, including reservoir constraint, gas producibility, and completion success. A sensor and to a sensing method that evaluates the level of hydrologic constraint in aquifers occurring in unconventional reservoirs, such as shales and coals is disclosed. Specifically, Raman spectroscopy is disclosed as a sensor and a sensing method that measures the level of naturally-occurring 13C in an aqueous reservoir and compares the level of 13C to the levels typical for highly constrained and highly unconstrained reservoirs. The disclosed sensor and sensing method also monitors the level of naturally-occurring 13C in a reservoir. Also disclosed is a method of using ?13CDic to evaluate geographic areas of coal bed reservoir water having biologic methanogenic activity.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: August 4, 2020
    Assignee: GAS SENSING TECHNOLOGY CORP.
    Inventors: John Pope, Daniel Buttry
  • Patent number: 10683749
    Abstract: A coal seam producibility determination system may include a fiber optic cable, the fiber optic extending from a DAS interrogation unit into a wellbore. The DAS interrogation unit may be located at a surface. The wellbore may intersect a plurality of coal seams to be measured, the coal seams comprising fluid and solubilized gas. The wellbore contains wellbore fluid and the wellbore has a wall. The fiber optic cable extends along the plurality of coal seams. The coal seam producibility determination system may further include a spectrometer, the spectrometer located at the surface or within the wellbore. The coal seam producibility determination system may also include an optical window, the optical window in optical communication with the spectrometer, the optical window in fluid communication with the wellbore fluid.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: June 16, 2020
    Assignee: GAS SENSING TECHNOLOGY CORP.
    Inventors: John Pope, Quentin Morgan
  • Publication number: 20200124584
    Abstract: A method may include drilling a wellbore, the wellbore intersecting a shale formation at an interval of the shale formation and casing at least a portion of the wellbore. The method may also include perforating the casing at the interval to fluidly couple the interval and the wellbore, and liberating free and absorbed gas entrapped within the interval. In addition, the method may include solubilizing in the wellbore fluid the free and absorbed gas, forming a plume comprising solubilized gas, and determining an identity and amount of solubilized gas in the plume.
    Type: Application
    Filed: July 21, 2017
    Publication date: April 23, 2020
    Inventors: Quentin MORGAN, John POPE
  • Patent number: 10355277
    Abstract: The present invention pertains to the selection of cathode materials. The cathode materials of concern are the conducting polymer or backbone and the redox active species or sulfur species. The selection of the materials is based on the characteristics of the materials relating to the other components of the batteries and to each other. The present invention also pertains to the resultant cathode materials, particularly a selected cathode material of a single component sulfur-based conducting polymer with the sulfur species covalently linked to the conducting polymer, and most particularly a thiophene based polymer with covalently linked sulfur species. The conducting polymers have been covalently-derivatized with sulfides and/or sulfide-containing groups as battery cathode materials. The present invention also pertains to a battery employing the selection method and resultant cathode materials.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: July 16, 2019
    Assignee: The Blue Sky Group, Inc.
    Inventors: John Pope, Dan Buttry, Shannon White, Robert Corcoran
  • Publication number: 20180328787
    Abstract: Methods and apparatus suitable for quickly and accurately measuring 13C levels and supporting data in an aqueous fluid reservoir. Interpreting the resulting data to indicate key factors regarding a reservoir and completion methods, including reservoir constraint, gas producibility, and completion success. A sensor and to a sensing method that evaluates the level of hydrologic constraint in aquifers occurring in unconventional reservoirs, such as shales and coals is disclosed. Specifically, Raman spectroscopy is disclosed as a sensor and a sensing method that measures the level of naturally-occurring 13C in an aqueous reservoir and compares the level of 13C to the levels typical for highly constrained and highly unconstrained reservoirs. The disclosed sensor and sensing method also monitors the level of naturally-occurring 13C in a reservoir. Also disclosed is a method of using ?13CDic to evaluate geographic areas of coal bed reservoir water having biologic methanogenic activity.
    Type: Application
    Filed: July 16, 2018
    Publication date: November 15, 2018
    Inventors: John Pope, Daniel Buttry
  • Patent number: 10031024
    Abstract: Methods and apparatus suitable for quickly and accurately measuring 13C levels and supporting data in an aqueous fluid reservoir. Interpreting the resulting data to indicate key factors regarding a reservoir and completion methods, including reservoir constraint, gas producibility, and completion success. A sensor and to a sensing method that evaluates the level of hydrologic constraint in aquifers occurring in unconventional reservoirs, such as shales and coals is disclosed. Specifically, Raman spectroscopy is disclosed as a sensor and a sensing method that measures the level of naturally-occurring 13C in an aqueous reservoir and compares the level of 13C to the levels typical for highly constrained and highly unconstrained reservoirs. The disclosed sensor and sensing method also monitors the level of naturally-occurring 13C in a reservoir. Also disclosed is a method of using ?13CDic to evaluate geographic areas of coal bed reservoir water having biologic methanogenic activity.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: July 24, 2018
    Assignee: GAS SENSING TECHNOLOGY CORP.
    Inventors: John Pope, Daniel Buttry
  • Publication number: 20180195384
    Abstract: A coal seam producibility determination system is disclosed. The coal seam producibility determination system may include a fiber optic cable, the fiber optic extending from a DAS interrogation unit into a wellbore. The DAS interrogation unit may be located at a surface. The wellbore may intersect a plurality of coal seams to be measured, the coal seams comprising fluid and solubilized gas. The wellbore contains wellbore fluid and the wellbore has a wall. The fiber optic cable extends along the plurality of coal seams. The coal seam producibility determination system may further include a spectrometer, the spectrometer located at the surface or within the wellbore. The coal seam producibility determination system may also include an optical window, the optical window in optical communication with the spectrometer, the optical window in fluid communication with the wellbore fluid.
    Type: Application
    Filed: July 1, 2016
    Publication date: July 12, 2018
    Inventors: John POPE, Quentin MORGAN
  • Patent number: 10020510
    Abstract: The present invention pertains to the selection of cathode materials. The cathode materials of concern are the conducting polymer or backbone and the redox active species or sulfur species. The selection of the materials is based on the characteristics of the materials relating to the other components of the batteries and to each other. The present invention also pertains to the resultant cathode materials, particularly a selected cathode material of a single component sulfur-based conducting polymer with the sulfur species covalently linked to the conducting polymer, and most particularly a thiophene based polymer with covalently linked sulfur species. The conducting polymers have been covalently-derivatized with sulfides and/or sulfide-containing groups as battery cathode materials. The present invention also pertains to a battery employing the selection method and resultant cathode materials.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: July 10, 2018
    Assignee: THE BLUE SKY GROUP INC
    Inventors: John Pope, Dan Buttry, Shannon White, Robert Corcoran
  • Patent number: 9816376
    Abstract: An analytical method that establishes a thermodynamic equilibrium or known dynamic relationship between the concentrations of gases, natural gas liquids and oils or pressures of gasses in an isolated zone of a shale, or group of distinct shale gas intervals, with the concentrations of fluids or pressures of gasses in a wellbore penetrating the shale interval or intervals. An analytical method for identifying the chemical composition of gas, natural gas liquids and oils and determining their origin in an isolated zone of a shale, or group of distinct shale gas intervals with the identification of chemical composition of gas, natural gas liquids and oils in a wellbore penetrating the shale interval or intervals. A surface measurement apparatus capable of performing the measurement ex-situ. A downhole measurement apparatus capable of reliably performing the measurement in-situ and a downhole straddle-packer assembly capable of isolating part of, or an entire shale interval.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: November 14, 2017
    Assignee: Gas Sensing Technology Corp.
    Inventors: John Pope, Quentin Morgan
  • Patent number: 9378277
    Abstract: Disclosed are various embodiments for a search query segmentation application. Search queries are broken into segments. Each of the segments is assigned a taxonomy node from a catalog of items. Search results are generated as those items included in the taxonomy nodes assigned to the search query segments.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: June 28, 2016
    Assignee: Amazon Technologies, Inc.
    Inventors: Lam Duy Nguyen, Nigel St. John Pope, Yanping Huang
  • Publication number: 20160064736
    Abstract: The present invention pertains to the selection of cathode materials. The cathode materials of concern are the conducting polymer or backbone and the redox active species or sulfur species. The selection of the materials is based on the characteristics of the materials relating to the other components of the batteries and to each other. The present invention also pertains to the resultant cathode materials, particularly a selected cathode material of a single component sulfur-based conducting polymer with the sulfur species covalently linked to the conducting polymer, and most particularly a thiophene based polymer with covalently linked sulfur species. The conducting polymers have been covalently-derivatized with sulfides and/or sulfide-containing groups as battery cathode materials. The present invention also pertains to a battery employing the selection method and resultant cathode materials.
    Type: Application
    Filed: September 8, 2015
    Publication date: March 3, 2016
    Applicant: The Blue Sky Group, Inc.
    Inventors: John Pope, Dan Buttry, Shannon White, Robert Corcoran
  • Publication number: 20150380730
    Abstract: The present invention pertains to the selection of cathode materials. The cathode materials of concern are the conducting polymer or backbone and the redox active species or sulfur species. The selection of the materials is based on the characteristics of the materials relating to the other components of the batteries and to each other. The present invention also pertains to the resultant cathode materials, particularly a selected cathode material of a single component sulfur-based conducting polymer with the sulfur species covalently linked to the conducting polymer, and most particularly a thiophene based polymer with covalently linked sulfur species. The conducting polymers have been covalently-derivatized with sulfides and/or sulfide-containing groups as battery cathode materials. The present invention also pertains to a battery employing the selection method and resultant cathode materials.
    Type: Application
    Filed: September 8, 2015
    Publication date: December 31, 2015
    Applicant: The Blue Sky Group, Inc.
    Inventors: John Pope, Dan Buttry, Shannon White, Robert Corcoran
  • Patent number: 8989821
    Abstract: Electronic devices having improved battery configurations, and more specifically configurations reducing overall space required for a battery and attendant electronics, as well as providing restraining mechanisms to prevent a battery from impacting these electronics.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: March 24, 2015
    Assignee: Apple Inc.
    Inventors: Benjamin John Pope, Daniel William Jarvis
  • Patent number: 8904858
    Abstract: The invention subject of this disclosure teaches a method of determining a production factor for a carbonaceous material reservoir, the method comprising: providing a well in a carbonaceous material reservoir; providing unsampled fluid at a depth in the well; placing a sensor adjacent to the unsampled fluid and performing a measurement on the unsampled fluid; using data from the measurement to determine a partial pressure of a solution gas in the carbonaceous material reservoir; and determining a production factor for the carbonaceous material reservoir from the partial pressure of the solution gas.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: December 9, 2014
    Assignee: Gas Sensing Technology Corp.
    Inventors: John Pope, Quentin Morgan
  • Patent number: 8867040
    Abstract: The invention subject of this disclosure teaches a method of determining a production factor for a carbonaceous material reservoir, the method comprising: providing a well in a carbonaceous material reservoir; providing unsampled fluid at a depth in the well; placing a sensor adjacent to the unsampled fluid and performing a measurement on the unsampled fluid; using data from the measurement to determine a partial pressure of a solution gas in the carbonaceous material reservoir; and determining a production factor for the carbonaceous material reservoir from the partial pressure of the solution gas.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: October 21, 2014
    Inventors: John Pope, Quentin Morgan
  • Publication number: 20140300895
    Abstract: An analytical method that establishes a thermodynamic equilibrium or known dynamic relationship between the concentrations of gases, natural gas liquids and oils or pressures of gasses in an isolated zone of a shale, or group of distinct shale gas intervals, with the concentrations of fluids or pressures of gasses in a wellbore penetrating the shale interval or intervals. An analytical method for identifying the chemical composition of gas, natural gas liquids and oils and determining their origin in an isolated zone of a shale, or group of distinct shale gas intervals with the identification of chemical composition of gas, natural gas liquids and oils in a wellbore penetrating the shale interval or intervals. A surface measurement apparatus capable of performing the measurement ex-situ. A downhole measurement apparatus capable of reliably performing the measurement in-situ and a downhole straddle-packer assembly capable of isolating part of, or an entire shale interval.
    Type: Application
    Filed: April 16, 2014
    Publication date: October 9, 2014
    Applicant: Gas Sensing Technology Corp
    Inventors: John Pope, Quentin Morgan
  • Publication number: 20140245827
    Abstract: The invention subject of this disclosure teaches a method of determining a production factor for a carbonaceous material reservoir, the method comprising: providing a well in a carbonaceous material reservoir; providing unsampled fluid at a depth in the well; placing a sensor adjacent to the unsampled fluid and performing a measurement on the unsampled fluid; using data from the measurement to determine a partial pressure of a solution gas in the carbonaceous material reservoir; and determining a production factor for the carbonaceous material reservoir from the partial pressure of the solution gas.
    Type: Application
    Filed: April 11, 2014
    Publication date: September 4, 2014
    Applicant: Gas Sensing Technology Corp
    Inventors: John Pope, Quentin Morgan
  • Publication number: 20140245826
    Abstract: The invention subject of this disclosure teaches a method of determining a production factor for a carbonaceous material reservoir, the method comprising: providing a well in a carbonaceous material reservoir; providing unsampled fluid at a depth in the well; placing a sensor adjacent to the unsampled fluid and performing a measurement on the unsampled fluid; using data from the measurement to determine a partial pressure of a solution gas in the carbonaceous material reservoir; and determining a production factor for the carbonaceous material reservoir from the partial pressure of the solution gas.
    Type: Application
    Filed: April 11, 2014
    Publication date: September 4, 2014
    Applicant: Gas Sensing Technology Corp
    Inventors: John Pope, Quentin Morgan