Patents by Inventor John Porterfield

John Porterfield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11931563
    Abstract: An apparatus for a heart of a patient having a cardiac assist device adapted to be implanted into the patient to assist the heart with pumping blood. The apparatus has a sensor adapted to be implanted into the patient. The sensor in communication with the cardiac assist device and the heart which measures native volume of the heart. Alternatively, the sensor monitors the heart based on admittance while the cardiac assist device. Alternatively, the sensor monitors the heart based on impedance.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: March 19, 2024
    Assignees: Board of Regents, The University of Texas System, CardioVol, LLC
    Inventors: John Porterfield, Jonathan W. Valvano, Clay Heighten, Anil Kottam, Marc David Feldman, Aleksandra Borisovna Gruslova, Drew R. Nolen
  • Patent number: 11918799
    Abstract: An apparatus for a heart of a patient having a cardiac assist device adapted to be implanted into the patient to assist the heart with pumping blood. The apparatus has a sensor adapted to be implanted into the patient. The sensor in communication with the cardiac assist device and the heart which measures native volume of the heart. Alternatively, the sensor monitors the heart based on admittance while the cardiac assist device. Alternatively, the sensor monitors the heart based on impedance.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: March 5, 2024
    Assignees: Board of Regents, The University of Texas System, Cardio Vol, LLC
    Inventors: John Porterfield, Jonathan W. Valvano, Clay Heighten, Anil Kottam, Marc David Feldman, Aleksandra Borisovna Gruslova, Drew R. Nolen
  • Patent number: 11911602
    Abstract: An apparatus for a heart of a patient having a cardiac assist device adapted to be implanted into the patient to assist the heart with pumping blood. The apparatus has a sensor adapted to be implanted into the patient. The sensor in communication with the cardiac assist device and the heart which measures native volume of the heart. Alternatively, the sensor monitors the heart based on admittance while the cardiac assist device. Alternatively, the sensor monitors the heart based on impedance.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: February 27, 2024
    Assignees: Board of Regents, The University of Texas System, Cardio Vol, I.LC
    Inventors: Jonathan W. Valvano, John Porterfield, Clay Heighten, Anil Kottam, Marc David Feldman, Aleksandra Borisovna Gruslova, Drew R. Nolen
  • Patent number: 11589767
    Abstract: An apparatus for measuring complex electrical admittance and/or complex electrical impedance in animal or human patients includes a first electrode and at least a second electrode which are adapted to be disposed in the patient. The apparatus includes a housing adapted to be disposed in the patient. The housing has disposed in it a stimulator in electrical communication with at least the first electrode to stimulate the first electrode with either current or voltage, a sensor in electrical communication with at least the second electrode to sense a response from the second electrode based on the stimulation of the first electrode, and a signal processor in electrical communication with the sensor to determine the complex electrical admittance or impedance of the patient.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: February 28, 2023
    Assignees: Board of Regents, The University of Texas System, Admittance Technologies, Inc.
    Inventors: Jonathan W. Valvano, Marc D. Feldman, John Porterfield, John A. Pearce, Erik Larson, Lev Shuhatovich, Kathryn Loeffler, Raffaele Cetrulo
  • Publication number: 20230038471
    Abstract: An apparatus for monitoring a patient post operation having electrically conducting leads which are adapted to extend from inside the patient. The leads having electrodes adapted to communicate with a heart of the patient and apply electrical signals to the heart. The electrodes providing cardiac signals to the computer in response to the electrical signals so the computer can determine in real time at least one of heart volume, end diastolic heart volume, end systolic heart volume, stroke volume, change in heart volume, change in stroke volume, contractility, respiration rate or tidal volume regarding the patient.
    Type: Application
    Filed: October 7, 2022
    Publication date: February 9, 2023
    Applicant: Board of Regents, The University of Texas System
    Inventors: Jonathan W. Valvano, John A. Pearce, Marc D. Feldman, Kaarthik Rajendran, John Porterfield, Anil Kottam, Wes Johnson
  • Publication number: 20220339428
    Abstract: An apparatus for a heart of a patient having a cardiac assist device adapted to be implanted into the patient to assist the heart with pumping blood. The apparatus has a sensor adapted to be implanted into the patient. The sensor in communication with the cardiac assist device and the heart which measures native volume of the heart. Alternatively, the sensor monitors the heart based on admittance while the cardiac assist device. Alternatively, the sensor monitors the heart based on impedance.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 27, 2022
    Applicants: Board of Regents, The University of Texas System, CardioVol, LLC
    Inventors: John Porterfield, Jonathan W. Valvano, Clay Heighten, Anil Kottam, Marc David Feldman, Aleksandra Borisovna Gruslova, Drew R. Nolen
  • Publication number: 20220339426
    Abstract: An apparatus for a heart of a patient having a cardiac assist device adapted to be implanted into the patient to assist the heart with pumping blood. The apparatus has a sensor adapted to be implanted into the patient. The sensor in communication with the cardiac assist device and the heart which measures native volume of the heart. The apparatus has a first cardiac assist device and a second cardiac assist device tuned to maximize blood flow to the body of the patient, while resting the heart so the heart may recover function. Alternatively, the sensor monitors the heart based on admittance while the cardiac assist device. Alternatively, the sensor monitors the heart based on impedance.
    Type: Application
    Filed: August 19, 2021
    Publication date: October 27, 2022
    Applicants: Board of Regents, The University of Texas System, CardioVol, LLC
    Inventors: Marc David Feldman, John Porterfield, Clay Heighten
  • Publication number: 20220339427
    Abstract: An apparatus for a heart of a patient having a cardiac assist device adapted to be implanted into the patient to assist the heart with pumping blood. The apparatus has a sensor adapted to be implanted into the patient. The sensor in communication with the cardiac assist device and the heart which measures native volume of the heart. Alternatively, the sensor monitors the heart based on admittance while the cardiac assist device. Alternatively, the sensor monitors the heart based on impedance.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 27, 2022
    Applicants: Board of Regents, The University of Texas System, CardioVol, LLC
    Inventors: John Porterfield, Jonathan W. Valvano, Clay Heighten, Anil Kottam, Marc David Feldman, Aleksandra Borisovna Gruslova, Drew R. Nolen
  • Publication number: 20220339425
    Abstract: An apparatus for a heart of a patient having a cardiac assist device adapted to be implanted into the patient to assist the heart with pumping blood. The apparatus has a sensor adapted to be implanted into the patient. The sensor in communication with the cardiac assist device and the heart which measures native volume of the heart. Alternatively, the sensor monitors the heart based on admittance while the cardiac assist device. Alternatively, the sensor monitors the heart based on impedance.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 27, 2022
    Applicants: Board of Regents, The University of Texas System, CardioVol, LLC
    Inventors: Jonathan W. Valvano, John Porterfield, Clay Heighten, Anil Kottam, Marc David Feldman, Aleksandra Borisovna Gruslova, Drew R. Nolen
  • Patent number: 11478646
    Abstract: An apparatus for monitoring a patient post operation having electrically conducting leads which are adapted to extend from inside the patient. The leads having electrodes adapted to communicate with a heart of the patient and apply electrical signals to the heart. The electrodes providing cardiac signals to the computer in response to the electrical signals so the computer can determine in real time at least one of heart volume, end diastolic heart volume, end systolic heart volume, stroke volume, change in heart volume, change in stroke volume, contractility, respiration rate or tidal volume regarding the patient.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: October 25, 2022
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jonathan W. Valvano, John A. Pearce, Marc D. Feldman, Kaarthik Rajendran, John Porterfield, Anil Kottam, Wes Johnson
  • Publication number: 20190357805
    Abstract: An apparatus for measuring complex electrical admittance and/or complex electrical impedance in animal or human patients includes a first electrode and at least a second electrode which are adapted to be disposed in the patient. The apparatus includes a housing adapted to be disposed in the patient. The housing has disposed in it a stimulator in electrical communication with at least the first electrode to stimulate the first electrode with either current or voltage, a sensor in electrical communication with at least the second electrode to sense a response from the second electrode based on the stimulation of the first electrode, and a signal processor in electrical communication with the sensor to determine the complex electrical admittance or impedance of the patient.
    Type: Application
    Filed: August 8, 2019
    Publication date: November 28, 2019
    Applicants: Board of Regents, The University of Texas System, Admittance Technologies, Inc.
    Inventors: Jonathan W. Valvano, Marc D. Feldman, John Porterfield, John A. Pearce, Erik Larson, Lev Shuhatovich, Kathryn Loeffler, Raffaele Cetrulo
  • Publication number: 20190298997
    Abstract: An apparatus for monitoring a patient post operation having electrically conducting leads which are adapted to extend from inside the patient. The leads having electrodes adapted to communicate with a heart of the patient and apply electrical signals to the heart. The electrodes providing cardiac signals to the computer in response to the electrical signals so the computer can determine in real time at least one of heart volume, end diastolic heart volume, end systolic heart volume, stroke volume, change in heart volume, change in stroke volume, contractility, respiration rate or tidal volume regarding the patient.
    Type: Application
    Filed: July 12, 2017
    Publication date: October 3, 2019
    Applicant: Board of Regents, The University of Texas System
    Inventors: Jonathan W. Valvano, John A. Pearce, Marc D. Feldman, Kaarthik Rajendran, John Porterfield, Anil Kottam, Wes Johnson
  • Patent number: 10420952
    Abstract: An apparatus for treating a patient's heart includes a sensor for measuring hemodynamics of the heart. The apparatus includes a processing unit which receives the hemodynamics from the sensor and uses the hemodynamics to determine whether to shock the heart. A method for treating a patient's heart. The method includes the steps of measuring hemodynamics of the heart with a sensor. There is the step of receiving the hemodynamics from the sensor at a processing unit which uses the hemodynamics to determine whether to shock the heart.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: September 24, 2019
    Assignees: Board of Regents, The University of Texas System, Admittance Technologies, Inc.
    Inventors: Marc D. Feldman, Erik R. Larson, John A. Pearce, Jonathan W. Valvano, John Porterfield
  • Patent number: 10376177
    Abstract: An apparatus for measuring complex electrical admittance and/or complex electrical impedance in animal or human patients includes a first electrode and at least a second electrode which are adapted to be disposed in the patient. The apparatus includes a housing adapted to be disposed in the patient. The housing has disposed in it a stimulator in electrical communication with at least the first electrode to stimulate the first electrode with either current or voltage, a sensor in electrical communication with at least the second electrode to sense a response from the second electrode based on the stimulation of the first electrode, and a signal processor in electrical communication with the sensor to determine the complex electrical admittance or impedance of the patient.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: August 13, 2019
    Assignees: Admittance Technologies, Inc., Board of Regents, The University of Texas System
    Inventors: Jonathan W. Valvano, Marc D. Feldman, John Porterfield, John A. Pearce, Erik Larson, Lev Shuhatovich, Kathryn Loeffler, Raffaele Cetrulo
  • Patent number: 10076669
    Abstract: An apparatus for treating a heart of a patient includes a first lead and at least a second lead for pacing the heart adapted to be in electrical communication with the heart. The apparatus includes a microcontroller in communication with the first and second leads which triggers the first lead at either different times or the same time from when the microcontroller triggers the second lead. Alternatively, the apparatus includes a microcontroller in communication with the first and second leads that determines heart volume, including stroke volume, end-systolic volume, and calculated values including ejection fraction, from admittance from signals from the first and second leads and uses the admittance as feedback to control heart volume ejected, as measured by stroke volume, calculated values such as ejection fraction, and control end-systolic volume, with respect to the first and second leads. A method for treating the heart of a patient.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: September 18, 2018
    Assignees: Admittance Technologies, Inc., Board of Regents, The University of Texas System
    Inventors: Marc D. Feldman, John Porterfield, Erik Larson, Jonathan W. Valvano, John A. Pearce
  • Publication number: 20180078169
    Abstract: An apparatus for determining tissue versus fluid components of an organ include a detector that generates a detector signal based on electrical signals derived from tissue and fluid. The apparatus includes a signal processor in communication with the detector which subtracts in real time a tissue component from the detector signal and produces a fluid volume signal. A method for monitoring a patient's fluid volume of a patient's organ. An apparatus for monitoring a patient's organ. A method for monitoring a patient's organ. A method to piggyback an admittance system onto a AICD/Bi-ventricular Pacemaker for a heart of a patient, in particular a weakened heart having features consistent with congestive heart failure. An apparatus for monitoring an organ, such as a heart, lungs, brain, skeletal muscle, and bladder of a patient which includes a detector which detects the admittance of the organ.
    Type: Application
    Filed: November 17, 2017
    Publication date: March 22, 2018
    Applicant: Board of Regents, The University of Texas System
    Inventors: Marc D. Feldman, John Porterfield, Karthik Raghavan, Jonathan W. Valvano, John A. Pearce
  • Patent number: 9820673
    Abstract: An implanted device for an organ of a patient including a housing. The device includes a detector having electrodes that have a varying distance over time between them which produces a detector signal based on electrical signals derived from the organ. The device includes a signal processor disposed in the housing in communication with the detector which determines admittance from the detector signal based on the varying distance over time between the electrodes. The device includes a drive circuit disposed in the housing to cause the electrodes to generate emitted electrical signals. A method for monitoring a patient's organ.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: November 21, 2017
    Assignee: Board of Regents, The University of Texas System
    Inventors: Marc D. Feldman, John Porterfield, Karthik Raghavan, Jonathan W. Valvano, John A. Pearce
  • Publication number: 20160262653
    Abstract: An apparatus for measuring complex electrical admittance and/or complex electrical impedance in animal or human patients includes a first electrode and at least a second electrode which are adapted to be disposed in the patient. The apparatus includes a housing adapted to be disposed in the patient. The housing has disposed in it a stimulator in electrical communication with at least the first electrode to stimulate the first electrode with either current or voltage, a sensor in electrical communication with at least the second electrode to sense a response from the second electrode based on the stimulation of the first electrode, and a signal processor in electrical communication with the sensor to determine the complex electrical admittance or impedance of the patient.
    Type: Application
    Filed: February 16, 2016
    Publication date: September 15, 2016
    Applicants: Board of Regents, The University of Texas System, Admittance Technologies, Inc.
    Inventors: Jonathan W. Valvano, Marc D. Feldman, John Porterfield, John A. Pearce, Erik Larson, Lev Shuhatovich, Kathryn Loeffler, Raffaele Cetrulo
  • Patent number: 9295404
    Abstract: An apparatus for measuring complex electrical admittance and/or complex electrical impedance in animal or human patients includes a first electrode and at least a second electrode which are adapted to be disposed in the patient. The apparatus includes a housing adapted to be disposed in the patient. The housing has disposed in it a stimulator in electrical communication with at least the first electrode to stimulate the first electrode with either current or voltage, a sensor in electrical communication with at least the second electrode to sense a response from the second electrode based on the stimulation of the first electrode, and a signal processor in electrical communication with the sensor to determine the complex electrical admittance or impedance of the patient.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: March 29, 2016
    Assignees: Admittance Technologies, Inc., Board of Regents, The University of Texas System
    Inventors: Jonathan W. Valvano, Marc D. Feldman, John Porterfield, John A. Pearce, Erik Larson, Lev Shuhatovich, Kathryn Loeffler, Raffaele Cetrulo
  • Publication number: 20140257121
    Abstract: An apparatus for determining tissue versus fluid components of an organ include a detector that generates a detector signal based on electrical signals derived from tissue and fluid. The apparatus includes a signal processor in communication with the detector which subtracts in real time a tissue component from the detector signal and produces a fluid volume signal. A method for monitoring a patient's fluid volume of a patient's organ. An apparatus for monitoring a patient's organ. A method for monitoring a patient's organ. A method to piggyback an admittance system onto a AICD/Bi-ventricular Pacemaker for a heart of a patient, in particular a weakened heart having features consistent with congestive heart failure. An apparatus for monitoring an organ, such as a heart, lungs, brain, skeletal muscle, and bladder of a patient which includes a detector which detects the admittance of the organ.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 11, 2014
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Marc D. Feldman, John Porterfield, Karthik Raghavan, Jonathan W. Valvano, John A. Pearce