Patents by Inventor John Pula

John Pula has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10233776
    Abstract: A gas turbine shroud ring segment assembly (36) with an outer structural block (32A) having cooling channels (72) between inlets (60) on a front face and outlets (74, 76) on a front hanger rail (48). The outlets may be positioned on a radially inner surface (77) of the front rail for impingement and forced convection cooling of backsides of radially inner front lips (44) of adjacent shroud ring segments (30A, 30B) mounted on front and rear rails (48, 50) of the block. The outlets may enter a pocket (86) on the inner surface configured to allow coolant flow in all positions of the ring segments (32A, 32B). The cooling channel may form a main channel (72A) and tributary channels (72B, 72C). These channels may be drilled upward from the rail to the inlet. The tributaries may have offset intersections (72E, 72D) with the main channel.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: March 19, 2019
    Assignee: SIEMENS ENERGY, INC.
    Inventors: John Pula, Andrew R. Narcus
  • Patent number: 9903210
    Abstract: A turbine blade tip shroud (22C, 22D) with a seal rail (32C, 32D) oriented in a circumferential direction of rotation (29) relative to a turbine axis, and extending radially outward from the tip relative to the turbine axis. A first tooth (48, 68) and a second tooth (50, 70) form respective downstream and upstream lateral departures or bumps on the seal rail. Each tooth has a sharp top leading edge (48, 50, 68, 70) and a smoothly curved side surface (49, 51, 69, 71). A back portion (56, 76) of the seal rail may span linearly from a lateral peak (66, 78) of the second tooth to a back end (62) of the seal rail that is centered on an extended centerline (60) of a front portion (54, 74) of the seal rail. The teeth may be disposed proximate or over a stacking axis (52) of the blade.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: February 27, 2018
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Charles M. Evans, Andrew R. Narcus, John Pula
  • Patent number: 9828858
    Abstract: A turbine blade airfoil (25, 31R, 31M, 31T, 72) comprising an outer surface shape defined by Cartesian coordinates of successive transverse profiles at radial increments as set forth in Tables 1a to 1k, wherein each table defines a transverse sectional profile characterized by a smooth curve connecting the coordinates, and the surface shape comprises a smooth surface connecting the sectional profiles. The blade may include a tip shroud with edge profiles defined by Cartesian coordinates set forth in Table 2a and 2b. A gusset/fillet may be provided between the blade airfoil and the tip shroud, with a planar diagonal surface over most of a diagonal bracing area of the gusset/fillet.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: November 28, 2017
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Eric Munoz, Edwin Lee Kite, John Pula, Charles M. Evans
  • Patent number: 9803868
    Abstract: A support structure in a gas turbine combustor end cap (24) including a bracket (60) with a first leg (61) and a second leg (62) forming a generally trapezoidal geometry. Each leg has a first end (61A, 62A) attached to an inner concentric ring (46), and a second end (61B, 62B) attached to a crossbar (65). The crossbar is attached to an outer concentric ring (48). A circular array of such brackets interconnects the two concentric rings (46, 48). Each leg has at least one curved middle portion (63, 64), such as an arcuate or sinusoidal curve at a midpoint on the length of each leg. This shape provides flexibility in a radial direction that accommodates differential thermal expansion of the concentric rings while providing a rigid connection in an axial direction.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 31, 2017
    Assignee: Siemens Energy, Inc.
    Inventors: Frank Moehrle, John Pula, Jeremy Lefler, Martin Konen
  • Publication number: 20160115795
    Abstract: A turbine blade airfoil (25, 31R, 31M, 31T, 72) comprising an outer surface shape defined by Cartesian coordinates of successive transverse profiles at radial increments as set forth in Tables 1a to 1k, wherein each table defines a transverse sectional profile characterized by a smooth curve connecting the coordinates, and the surface shape comprises a smooth surface connecting the sectional profiles. The blade may include a tip shroud with edge profiles defined by Cartesian coordinates set forth in Table 2a and 2b. A gusset/fillet may be provided between the blade airfoil and the tip shroud, with a planar diagonal surface over most of a diagonal bracing area of the gusset/fillet.
    Type: Application
    Filed: May 20, 2014
    Publication date: April 28, 2016
    Applicant: Siemens Energy, Inc.
    Inventors: Eric Munoz, Edwin Lee Kite, John Pula, Charles M. Evans
  • Publication number: 20160108749
    Abstract: A turbine blade tip shroud (22C, 22D) with a seal rail (32C, 32D) oriented in a circumferential direction of rotation (29) relative to a turbine axis, and extending radially outward from the tip relative to the turbine axis. A first tooth (48, 68) and a second tooth (50, 70) form respective downstream and upstream lateral departures or bumps on the seal rail. Each tooth has a sharp top leading edge (48, 50, 68, 70) and a smoothly curved side surface (49, 51, 69, 71). A back portion (56, 76) of the seal rail may span linearly from a lateral peak (66, 78) of the second tooth to a back end (62) of the seal rail that is centered on an extended centerline (60) of a front portion (54, 74) of the seal rail. The teeth may be disposed proximate or over a stacking axis (52) of the blade.
    Type: Application
    Filed: May 20, 2014
    Publication date: April 21, 2016
    Applicant: Siemens Energy, Inc.
    Inventors: Charles M. EVANS, Andrew R. NARCUS, John PULA
  • Publication number: 20160084109
    Abstract: A gas turbine shroud ring segment assembly (36) with an outer structural block (32A) having cooling channels (72) between inlets (60) on a front face and outlets (74, 76) on a front hanger rail (48). The outlets may be positioned on a radially inner surface (77) of the front rail for impingement and forced convection cooling of backsides of radially inner front lips (44) of adjacent shroud ring segments (30A, 30B) mounted on front and rear rails (48, 50) of the block. The outlets may enter a pocket (86) on the inner surface configured to allow coolant flow in all positions of the ring segments (32A, 32B). The cooling channel may form a main channel (72A) and tributary channels (72B, 72C). These channels may be drilled upward from the rail to the inlet. The tributaries may have offset intersections (72E, 72D) with the main channel.
    Type: Application
    Filed: May 20, 2014
    Publication date: March 24, 2016
    Applicant: Siemens Energy, Inc.
    Inventors: John Pula, Andrew R. Narcus
  • Patent number: 8955331
    Abstract: A nut (64) is affixed to an outer surface of a transition impingement sleeve forward ring (50) that encircles, and is affixed to, a forward end (44) of a tubular transition impingement sleeve (45). The nut has a threaded hole (63) aligned with a hole (66) in the impingement sleeve forward ring. A machine screw (68) is threaded into the nut and extends through the hole (66), and has a radially inner end with a wear pad (70), and a radially outer end with a turning tool engagement element (72). The wear pad contacts an outer surface of an aft portion of a transition piece forward outer ring (52) that is surrounded by the transition impingement sleeve forward ring (50). The rotational position of the machine screw (68) sets a radial gap (76) between the transition impingement sleeve forward ring and the transition piece forward outer ring.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: February 17, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Frank Moehrle, John Pula, Jeremy Lefler, Martin Konen
  • Patent number: 8955330
    Abstract: A combustion chamber liner (41) with a forward section (44) and an aft section (46). The aft section has an array of aft axial cooling fins (62) covered by a tubular support ring (52), thus forming an array of aft axial grooves (66) between the aft axial fins. Inlet holes (54) in the front end of the support ring may admit coolant (37) into an upstream end of the aft axial cooling fins. An impingement plenum (61) may receive the coolant just before the aft axial cooling fins. Each aft axial fin may include a plurality of axially spaced bumpers (64) that contact the support ring. Spaces or grooves (68) between the bumpers provide circumferential cross flow of coolant between the grooves. The aft axial grooves may discharge the coolant as film cooling along the inner wall (76) of a transition duct (28).
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: February 17, 2015
    Assignee: Siemens Energy, Inc.
    Inventors: Andrew R. Narcus, Kristel Negron-Sanchez, John Pula, Neal Therrien
  • Publication number: 20120291452
    Abstract: A support structure in a gas turbine combustor end cap (24) including a bracket (60) with a first leg (61) and a second leg (62) forming a generally trapezoidal geometry. Each leg has a first end (61A, 62A) attached to an inner concentric ring (46), and a second end (61B, 62B) attached to a crossbar (65). The crossbar is attached to an outer concentric ring (48). A circular array of such brackets interconnects the two concentric rings (46, 48). Each leg has at least one curved middle portion (63, 64), such as an arcuate or sinusoidal curve at a midpoint on the length of each leg. This shape provides flexibility in a radial direction that accommodates differential thermal expansion of the concentric rings while providing a rigid connection in an axial direction.
    Type: Application
    Filed: September 23, 2011
    Publication date: November 22, 2012
    Inventors: Frank Moehrle, John Pula, Jeremy Lefler, Martin Konen
  • Publication number: 20120291437
    Abstract: A nut (64) is affixed to an outer surface of a transition impingement sleeve forward ring (50) that encircles, and is affixed to, a forward end (44) of a tubular transition impingement sleeve (45). The nut has a threaded hole (63) aligned with a hole (66) in the impingement sleeve forward ring. A machine screw (68) is threaded into the nut and extends through the hole (66), and has a radially inner end with a wear pad (70), and a radially outer end with a turning tool engagement element (72). The wear pad contacts an outer surface of an aft portion of a transition piece forward outer ring (52) that is surrounded by the transition impingement sleeve forward ring (50). The rotational position of the machine screw (68) sets a radial gap (76) between the transition impingement sleeve forward ring and the transition piece forward outer ring.
    Type: Application
    Filed: October 24, 2011
    Publication date: November 22, 2012
    Inventors: Frank Moehrle, John Pula, Jeremy Lefler, Martin Konen
  • Publication number: 20120247111
    Abstract: A combustion chamber liner (41) with a forward section (44) and an aft section (46). The aft section has an array of aft axial cooling fins (62) covered by a tubular support ring (52), thus forming an array of aft axial grooves (66) between the aft axial fins. Inlet holes (54) in the front end of the support ring may admit coolant (37) into an upstream end of the aft axial cooling fins. An impingement plenum (61) may receive the coolant just before the aft axial cooling fins. Each aft axial fin may include a plurality of axially spaced bumpers (64) that contact the support ring. Spaces or grooves (68) between the bumpers provide circumferential cross flow of coolant between the grooves. The aft axial grooves may discharge the coolant as film cooling along the inner wall (76) of a transition duct (28).
    Type: Application
    Filed: August 18, 2011
    Publication date: October 4, 2012
    Inventors: Andrew R. Narcus, Kristel Negron-Sanchez, John Pula, Neal Therrien