Patents by Inventor John Q. Chen

John Q. Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7547812
    Abstract: A catalyst for converting methanol to light olefins and the process for making and using the catalyst are disclosed and claimed. SAPO-34 is a specific catalyst that benefits from its preparation in accordance with this invention. A seed material is used in making the catalyst that has a higher content of the EL metal than is found in the principal part of the catalyst. The molecular sieve has predominantly a roughly rectangular parallelepiped morphology crystal structure with a lower fault density and a better selectivity for light olefins.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: June 16, 2009
    Assignee: UOP LLC
    Inventors: Wharton Sinkler, Robert W. Broach, Natasha Erdman, Thomas M. Reynolds, John Q. Chen, Stephen T. Wilson, Paul T. Barger
  • Publication number: 20090062113
    Abstract: A process is presented for the formation of a SAPO-34 catalyst product. The process, that involves treatment with water or optionally at least one dissolved solid selected from the group consisting of ammonium chloride, ammonium phosphate, ammonium sulfate, ammonium acetate, ammonium carbonate, ammonium nitrate and mixtures thereof creates a SAPO-34 catalyst that has an increased selectivity for production of ethylene and propylene.
    Type: Application
    Filed: August 31, 2007
    Publication date: March 5, 2009
    Inventors: Raelynn M. Miller, John Q. Chen, Stephen T. Wilson
  • Patent number: 7432406
    Abstract: A dehydrogenation process using an improved noble metal containing catalyst is disclosed. The catalyst comprises a non-acidic molecular sieve having a three-dimensional microporous framework structure of tin, aluminum and silicon tetrahedral oxide units. The non-acidic molecular sieve has a noble metal such as platinum dispersed thereon. The molecular sieve is rendered non-acidic by treating it with an alkali or alkaline earth metal. At least 10% of the tin is in a reduced oxidation state.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: October 7, 2008
    Assignee: UOP LLC
    Inventors: John Q. Chen, Jaime G. Moscoso, Jeffery C. Bricker, Michelle J. Cohn
  • Publication number: 20080227934
    Abstract: The invention is directed to a method of rejuvenating silicoaluminophosphate molecular sieve catalyst that has been deactivated hydrothermally as well as a method of using the rejuvenated catalyst to make an olefin product from an oxygenate feed. In particular, the invention is directed to rejuvenating the catalyst by contacting it with warm water, ammonium salts, dilute acids or low pressure steam until the catalytic activity level of the catalyst has been increased to the desired extent.
    Type: Application
    Filed: May 20, 2008
    Publication date: September 18, 2008
    Inventor: John Q. Chen
  • Patent number: 7408092
    Abstract: The average propylene cycle selectivity of an oxygenate to propylene (OTP) process using a dual-function oxygenate conversion catalyst is substantially enhanced by the use of a combination of: 1) moving bed reactor technology in the hydrocarbon synthesis portion of the OTP flow scheme in lieu of the fixed bed technology of the prior art; 2) a hydrothermally stabilized and dual-functional catalyst system comprising a molecular sieve having dual-function capability dispersed in a phosphorus-modified alumina matrix containing labile phosphorus and/or aluminum anions; and 3) a catalyst on-stream cycle time of 400 hours or less. These provisions stabilize the catalyst against hydrothermal deactivation and hold the build-up of coke deposits on the catalyst to a level which does not substantially degrade dual-function catalyst activity, oxygenate conversion and propylene selectivity, thereby enabling maintenance of average propylene cycle yield near or at essentially start-of-cycle levels.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: August 5, 2008
    Assignee: UOP LLC
    Inventors: Bryan K. Glover, John Q. Chen, Peter R. Pujado, Bipin V. Vora
  • Patent number: 7329790
    Abstract: The economics of a catalytic process using a fluidized conversion zone and a relatively expensive catalyst for converting an oxygenate to light olefins are substantially improved by recovering and recycling effluent contaminating catalyst particles from the product effluent stream withdrawn from the conversion zone which are present despite the use of one or more vapor-solid cyclone separating means to clean up this effluent stream. The contaminating catalyst particles are separated from this product effluent stream using a wet scrubbing zone and an optional dewatering zone to recover a slurry containing the contaminated particles which, quite surprisingly, can be successfully directly recycled to the oxygenate conversion zone or to the associated catalyst regeneration zone without loss of any substantial amount of catalytic activity thereby decreasing the amount of fresh catalyst addition required to make up for this source of catalyst loss.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: February 12, 2008
    Assignee: Uop LLC
    Inventors: Bradford L. Bjorklund, John Q. Chen
  • Publication number: 20070059236
    Abstract: A catalyst for the use in methanol to olefin conversion is identified, and a process for identifying the structure of the catalyst is presented, which is used to determine the quality of the catalyst for its selectivity for producing high light olefins yield.
    Type: Application
    Filed: September 9, 2005
    Publication date: March 15, 2007
    Inventors: Robert W. Broach, Mary A. Vanek, Andrzej Z. Ringwelski, Stephen T. Wilson, Raelynn M. Miller, John Q. Chen