Patents by Inventor John R. Adams

John R. Adams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6995296
    Abstract: A process for the alkylation of alkane with olefin or olefin precursor such as an oligomer of tertiary olefin comprising contacting a liquid system comprising acid catalyst, isoparaffin and olefin in concurrent downflow into contact in a reaction zone with a disperser mesh under conditions of temperature and pressure to react said isoparaffin and said olefin to produce an alkylate product is disclosed. Preferably, the liquid system is maintained at about its boiling point in the reaction zone. Unexpectedly, the olefin oligomers have been found to function as olefin precursors and not as olefins in the reaction. Thus, for example, a cold acid alkylation using an oligomer of isobutene (principally dimer and trimer) with isobutane produces isooctane with the isobutane reacting with the constituent isobutene units of the oligomers on a molar basis. The product isooctane is essentially the same as that produced in the conventional cold acid process.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: February 7, 2006
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Mitchell E. Loescher, John R. Adams, Abraham P. Gelbein
  • Patent number: 6858770
    Abstract: A process for the alkylation of alkane with olefin or olefin precursor such as an oligomer of tertiary olefin comprising contacting a liquid system comprising acid catalyst, isoparaffin and olefin in concurrent downflow into contact in a reaction zone with a disperser mesh under conditions of temperature and pressure to react said isoparaffin and said olefin to produce an alkylate product is disclosed. Preferably, the liquid system is maintained at about its boiling point in the reaction zone. Unexpectedly, the olefin oligomers have been found to function as olefin precursors and not as olefins in the reaction. Thus, for example, a cold acid alkylation using an oligomer of isobutene (principally dimer and trimer) with isobutane produces isooctane with the isobutane reacting with the constituent isobutene units of the oligomers on a molar basis. The product isooctane is essentially the same as that produced in the conventional cold acid process.
    Type: Grant
    Filed: August 15, 2002
    Date of Patent: February 22, 2005
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, Jr., Mitchell E. Loescher, John R. Adams, Abraham P. Gelbein
  • Publication number: 20040260136
    Abstract: A process for the alkylation of alkane with olefin or olefin precursor such as an oligomer of tertiary olefin comprising contacting a liquid system comprising acid catalyst, isoparaffin and olefin in concurrent downflow into contact in a reaction zone with a disperser mesh under conditions of temperature and pressure to react said isoparaffin and said olefin to produce an alkylate product is disclosed. Preferably, the liquid system is maintained at about its boiling point in the reaction zone. Unexpectedly, the olefin oligomers have been found to function as olefin precursors and not as olefins in the reaction. Thus, for example, a cold acid alkylation using an oligomer of isobutene (principally dimer and trimer) with isobutane produces isooctane with the isobutane reacting with the constituent isobutene units of the oligomers on a molar basis. The product isooctane is essentially the same as that produced in the conventional cold acid process.
    Type: Application
    Filed: June 17, 2004
    Publication date: December 23, 2004
    Inventors: Lawrence A. Smith, Mitchell E. Loescher, John R. Adams, Abraham P. Gelbein
  • Publication number: 20040171901
    Abstract: A process for the alkylation of alkane with olefin or olefin precursor such as an oligomer of tertiary olefin comprising contacting a liquid system comprising acid catalyst, isoparaffin and olefin in concurrent downflow into contact in a reaction zone with a disperser mesh under conditions of temperature and pressure to react said isoparaffin and said olefin to produce an alkylate product is disclosed. Preferably, the liquid system is maintained at about its boiling point in the reaction zone. Unexpectedly, the olefin oligomers have been found to function as olefin precursors and not as olefins in the reaction. Thus, for example, a cold acid alkylation using an oligomer of isobutene (principally dimer and trimer) with isobutane produces isooctane with the isobutane reacting with the constituent isobutene units of the oligomers on a molar basis. The product isooctane is essentially the same as that produced in the conventional cold acid process.
    Type: Application
    Filed: March 4, 2004
    Publication date: September 2, 2004
    Inventors: Lawrence A. Smith, Mitchell E. Loescher, John R. Adams, Abraham P. Gelbein
  • Publication number: 20040052703
    Abstract: An internal static mixing system such as a disperser of mesh wire or expanded metal co-knit with a multi filament material selected from inert polymers, catalytic polymers, catalytic metals or mixtures in combination with a vertical reactor having a reaction zone and the disperser disposed in said reaction zone, particularly for carrying out paraffin alkylation using acid catalyst is disclosed. The wire mesh provides the structural integrity of the system as well as the open space required in reactors for the movement of vapors and liquids though the system. The disperser may be in sheets, bundles or bales or positioned within a frame.
    Type: Application
    Filed: August 15, 2002
    Publication date: March 18, 2004
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Lawrence A. Smith, Abraham P. Gelbein, John R. Adams
  • Publication number: 20040030207
    Abstract: A process for removing acetylenic compounds using unsulfided metallic nickel or unsulfided metallic nickel modified with metallic Mo, Re, Bi or mixtures in which the catalyst is used alone or is used in combination with other acetylenic selective catalysts. The unsulfided metallic nickel catalyst or modified catalyst must be the first catalyst to contact the hydrocarbon stream.
    Type: Application
    Filed: August 8, 2002
    Publication date: February 12, 2004
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: J. Yong Ryu, John R. Adams, Willibrord A. Groten
  • Publication number: 20030176755
    Abstract: A process for the alkylation of alkane with olefin or olefin precursor such as an oligomer of tertiary olefin comprising contacting a liquid system comprising acid catalyst, isoparaffin and olefin in concurrent downflow into contact in a reaction zone with a disperser mesh under conditions of temperature and pressure to react said isoparaffin and said olefin to produce an alkylate product is disclosed. Preferably, the liquid system is maintained at about its boiling point in the reaction zone. Unexpectedly, the olefin oligomers have been found to function as olefin precursors and not as olefins in the reaction. Thus, for example, a cold acid alkylation using an oligomer of isobutene (principally dimer and trimer) with isobutane produces isooctane with the isobutane reacting with the constituent isobutene units of the oligomers on a molar basis. The product isooctane is essentially the same as that produced in the conventional cold acid process.
    Type: Application
    Filed: August 15, 2002
    Publication date: September 18, 2003
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventors: Lawrence A. Smith, Mitchell E. Loescher, John R. Adams, Abraham P. Gelbein
  • Patent number: 6620965
    Abstract: A process for producing vinyl acetate comprising reacting ethylene, acetic acid and oxygen together in at least partially liquid phase in the presence of a catalyst comprising a noble metal component.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: September 16, 2003
    Assignee: Catalytic Distillation Technologies
    Inventors: John R. Adams, Willibrord A. Groten, Speros P. Nemphos
  • Publication number: 20030070157
    Abstract: A method for estimating effort and cost to maintain a software application, group of applications or an aggregate system of applications entails determining a system size (in function points) and productivity level (in function points per hour or full-time equivalent). The productivity level takes into consideration the maintenance tasks to be performed as well as personnel attributes, such as capability and experience pertaining to the task. The effort equals the product of an effort multiplier and the system size divided by the productivity level. The effort multiplier takes into account maintenance complexities that may result in added effort and cost. The cost is determined by applying prevailing rates and fees to the calculated effort. As the maintained system is developed and enhanced, and as portions of the system are retired, the system size and productivity level are re-assessed and the effort and cost to maintain the system, as modified, are re-computed.
    Type: Application
    Filed: August 20, 2002
    Publication date: April 10, 2003
    Inventors: John R. Adams, Kathleen D. Kear
  • Patent number: 6242661
    Abstract: A process for the separation of isobutene, otherwise inseparable from butene-1 by fractionation, in high purity from butenes contained in a mixed hydrocarbon stream containing butene-1, butene-2 and small amounts of butadiene in which the mixed hydrocarbon stream is fed to distillation column reactor containing an alumina supported palladium oxide catalyst. The column is operated to tend to exclude butene-2 from contact with the catalyst and to maintain butene-1 in contact with the catalyst to isomerize the butene-1 to butene-2. As butene-2 is produced it is distilled away from the catalyst, upsetting the equilibrium and allowing for a greater than equilibrium amount of butene-2. The isobutene and isobutane are concurrently separated from the butene-2. Additionally, any butadiene in the feed is hydrogenated to butenes. The bottoms is rich in butene-2.
    Type: Grant
    Filed: July 16, 1999
    Date of Patent: June 5, 2001
    Assignee: Catalytic Distillation Technologies
    Inventors: Gary G. Podrebarac, John R. Adams
  • Patent number: 6033633
    Abstract: In a boiling point reactor wherein reactants react exothermically to vaporize a portion of the reaction mixture in a fixed catalyst bed, a cooling coil is provided within the bed which condenses a portion of the vaporized reaction mixture. The condensing heat transfer coefficient within the bed is thus increased dramatically and efficient heat removal is achieved.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: March 7, 2000
    Assignee: Catalytic Distillation Technologies
    Inventor: John R. Adams
  • Patent number: 6026914
    Abstract: A method is presented for accurately surveying and determining the profile of the path of a subterranean wellbore containing a constant density fluid extending contiguously throughout. A first pressure sensor, associated with a downhole tool, is traversed station-by-station along the wellbore for measuring the pressure of the fluid within the wellbore at each station. A second pressure sensor is located within the wellbore fluid at a known elevation. The elevation of the first pressure sensor, at a station, is determined by adding the calculated differential height to the known absolute elevation of the second sensor. As each elevation is referenced to the second sensor, no cumulative errors are incurred. If the density of the fluid is unknown, a third pressure sensor within the wellbore fluid can be provided at a known elevation different from that of the second sensor. The areal position of each station is determined by conventional means associated with the downhole tool.
    Type: Grant
    Filed: January 28, 1998
    Date of Patent: February 22, 2000
    Assignee: Alberta Oil Sands Technology and Research Authority
    Inventors: John R. Adams, Ross Hay
  • Patent number: 6002058
    Abstract: A process for the alkylation of benzene contained in a mixed refinery stream is disclosed wherein the refinery stream is first subjected to hydrogenation of higher olefins prior to alkylation of the benzene with selected types and quantities of lower olefins. Streams containing sulfur compounds may be pretreated by hydrodesulfurization. All of the process steps are advantageously carried out in distillation column reactors to take advantage of that mode of operation.
    Type: Grant
    Filed: November 2, 1998
    Date of Patent: December 14, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Robert P. Arganbright, Lawrence A. Smith, Jr., John R. Adams
  • Patent number: 5942456
    Abstract: A catalytic distillation structure containing (1) a solid catalytic material comprising a catalyst component and (2) a structure. The total volume of open space for the catalytic distillation structure should be at least 10 volume % and preferably at least 20 volume % up to about 65 volume %. The catalytic material may be a mixture of two or more catalysts or the individual catalyst may occupy separate and distinct areas of the structure without physical mixing of the catalysts. The structural element may contain substantially rigid elements and porous containers which contain the catalytic material. The structural element may be comprised of the porous containers. Other catalytic distillation structures may comprises the porous containers for the catalysts and a resilient material such as demister wire.
    Type: Grant
    Filed: December 9, 1996
    Date of Patent: August 24, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: Clifford S. Crossland, John R. Adams
  • Patent number: 5925685
    Abstract: Catalytic distillation reactions are improved by having an inert condensing component present in the reaction which is boiling and condensing within the reaction which washes the catalyst in the system and, in the case of gaseous reactants, occludes a portion of the reactants to facilitate the reaction without unduly high pressures. The inert condensing component is boiling at the conditions within the reactor and is taken overhead for condensation and return as reflux. The inert condensing component may occlude the gaseous reactants allowing for better contact with the catalyst and provides the benefits of concurrent reaction and distillation, for example, the reaction of CO and H.sub.2 over a copper catalyst to produce methanol using propane as the inert condensing component.
    Type: Grant
    Filed: October 6, 1997
    Date of Patent: July 20, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: John R. Adams, Thomas P. Hickey
  • Patent number: 5894076
    Abstract: A process for the alkylation of benzene contained in a mixed refinery stream is disclosed wherein the refinery stream is first subjected to hydrogenation of higher olefins prior to alkylation of the benzene with selected types and quantities of lower olefins. Streams containing sulfur compounds may be pretreated by hydrodesulfurization. All of the process steps are advantageously carried out in distillation column reactors to take advantage of that mode of operation.
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: April 13, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: Dennis Hearn, Robert P. Arganbright, Lawrence A. Smith, Jr., John R. Adams
  • Patent number: 5886055
    Abstract: A process for the production of methanol is disclosed wherein the gaseous reactants of CO, H.sub.2 and optimally CO.sub.2 are reacted in a distillation column reactor in the presence of an inert C.sub.7 -C.sub.12 component, which is boiling at the reaction temperature within the catalyst bed. The inert component is taken overhead along with the methanol and separated therefrom for reflux of the inert component back to the reactor.
    Type: Grant
    Filed: January 13, 1997
    Date of Patent: March 23, 1999
    Assignee: Catalytic Distillation Technologies
    Inventors: Speros P. Nemphos, Willibrord A. Groten, John R. Adams
  • Patent number: 5840259
    Abstract: In a boiling point reactor wherein reactants react exothermically to vaporize a portion of the reaction mixture in a fixed catalyst bed, a cooling coil is provided within the bed which condenses a portion of the vaporized reaction mixture. The condensing heat transfer coefficient within the bed is thus increased dramatically and efficient heat removal is achieved.
    Type: Grant
    Filed: April 5, 1993
    Date of Patent: November 24, 1998
    Assignee: Catalytic Distillation Technologies
    Inventor: John R. Adams
  • Patent number: 5792891
    Abstract: An alkene skeletal isomerization process is employed in an integrated process for the production of tertiary ether, e.g., tertiary amyl methyl ether (TAME) from the reaction of isoamylenes (iC.sub.5.sup.= 's) with methanol in the presence of an acid cation exchange resin. A light naphtha from a fluid catalytic cracking unit is used as the source of the iC.sub.5.sup.= 's in a process which separates the C.sub.5 containing fraction from the light naphtha, selectively hydrogenates the di-olefins contained in the C.sub.5 containing fraction, reacts the iC.sub.5.sup.= 's contained in the C.sub.5 containing fraction with methanol to form TAME, separates the TAME from the unreacted materials as a product, separates methanol from the unreacted materials, isomerizes a portion of the nC.sub.5.sup.= 's to iC.sub.5.sup.= 's , for example using a zeolite or an alumina treated with methanol, and use of the isomerization product as feed for a TAME reactor.
    Type: Grant
    Filed: February 3, 1997
    Date of Patent: August 11, 1998
    Assignee: Catalytic Distillation Technologies
    Inventors: John R. Adams, Lawrence A. Smith, Jr., Dennis Hearn, Edward M. Jones, Jr., Robert P. Arganbright
  • Patent number: D451048
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: November 27, 2001
    Inventor: John R Adams