Patents by Inventor John R. Fraley

John R. Fraley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220165627
    Abstract: A process includes measuring at least one component parameter of a plurality of components with a testing device; and arranging at least a portion of the plurality of components in a sequential order based on the at least one component parameter with an implementation system in at least one of the following: a shipping format and a device implementation of the portion of the plurality of components. A system is disclosed as well.
    Type: Application
    Filed: November 23, 2020
    Publication date: May 26, 2022
    Inventors: Zach COLE, Morgan Andrew RODDY, John R. FRALEY, Jonathan K. HAYES, Adam Benjamin BARKLEY
  • Patent number: 9071888
    Abstract: A telemetry system for use in a combustion turbine engine (10) having a compressor (12), a combustor and a turbine (16) that includes a sensor (306) in connection with a turbine blade (301) or vane (22). A telemetry transmitter circuit (312) may be affixed to the turbine blade with an electrical connecting material (307) for routing electronic data signals from the sensor (306) to the telemetry transmitter circuit, the electronic data signals indicative of a condition of the turbine blade. A resonant energy transfer system for powering the telemetry transmitter circuit may include a rotating data antenna (314) affixed to the turbine blade or on a same substrate as that of the circuit. A stationary data antenna (320) may be affixed to a stationary component such as a stator (323) proximate and in spaced relation to the rotating data antenna for receiving electronic data signals from the rotating data antenna.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: June 30, 2015
    Assignees: Siemens Aktiengesellschaft, ARKANSAS POWER ELECTRONICS INTERNATIONAL, INC
    Inventors: Ramesh Subramanian, Anand A. Kulkarni, David J. Mitchell, Bjoern Karlsson, Rod Waits, John R. Fraley
  • Patent number: 8952674
    Abstract: A voltage regulator circuitry (50) adapted to operate in a high-temperature environment of a turbine engine is provided. The voltage regulator may include a constant current source (52) including a first semiconductor switch (54) and a first resistor (56) connected between a gate terminal (G) and a source terminal (S) of the first semiconductor switch. A second resistor (58) is connected to the gate terminal of the first semiconductor switch (54) and to an electrical ground (64). The constant current source is coupled to generate a voltage reference across the second resistor 58. A source follower output stage 66 may include a second semiconductor switch (68) and a third resistor (58) connected between the electrical ground and a source terminal of the second semiconductor switch. The generated voltage reference is applied to a gating terminal of the second semiconductor switch (58).
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: February 10, 2015
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, John R. Fraley, Jie Yang, Cora Schillig, Bryon Western, Roberto Marcelo Schupbach
  • Patent number: 8803703
    Abstract: A circuitry adapted to operate in a high-temperature environment of a turbine engine is provided. A relatively high-gain differential amplifier (102) may have an input terminal coupled to receive a voltage indicative of a sensed parameter of a component (20) of the turbine engine. A hybrid load circuitry may be coupled to the differential amplifier. A voltage regulator circuitry (244) may be coupled to power the differential amplifier. The differential amplifier, the hybrid load circuitry and the voltage regulator circuitry may each be disposed in the high-temperature environment of the turbine engine.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: August 12, 2014
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, John R. Fraley, Jie Yang, Cora Schillig, Bryon Western, Roberto Marcelo Schupbach
  • Patent number: 8797179
    Abstract: A telemetry system for use in a combustion turbine engine (10) that includes a first sensor (306) in connection with a turbine blade (301) or vane (22). A first telemetry transmitter circuit (312) is affixed to the turbine blade and routes electronic data signals, indicative of a condition of the blade, from the sensor to a rotating data antenna (314) that is affixed to the turbine blade or is on a same substrate as that of the circuit. A stationary data antenna (333) may be affixed to a stationary component (323) proximate and in spaced relation to the rotating data antenna for receiving electronic data signals from the rotating data antenna. A second sensor (335) transmits electronic data signals indicative of the stationary component to a second telemetry circuit (332), which routes the signals to the stationary antenna. The stationary antenna transmits the electronic data signals to a receiver (338).
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: August 5, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ramesh Subramanian, Anand A. Kulkarni, David J. Mitchell, Bjoern Karlsson, Rod Waits, John R. Fraley
  • Patent number: 8766720
    Abstract: A circuitry (120) adapted to operate in a high-temperature environment of a turbine engine is provided. The circuitry may include a differential amplifier (122) having an input terminal (124) coupled to a sensing element to receive a voltage indicative of a sensed parameter. A hybrid load circuitry (125) may be AC-coupled to the differential amplifier. The hybrid load circuitry may include a resistor-capacitor circuit (134) arranged to provide a path to an AC signal component with respect to the drain terminal of the switch (e.g., 126) of a differential pair of semiconductor switches 126, 128, which receives the voltage indicative of the sensed parameter.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: July 1, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Mitchell, John R. Fraley, Jie Yang, Cora Schillig, Roberto Marcelo Schupbach, Bryon Western
  • Patent number: 8717095
    Abstract: Chopper circuitry may be adapted to operate in a high-temperature environment of a turbine. A first semiconductor switch (122) may have a first terminal coupled to receive a first output signal from a first leg (148) of a differential amplifier (150). A second switch (128) may have a first terminal coupled thru a first resistive element (R1) to a second terminal of the first semiconductor switch. The first terminal of the second semiconductor switch may be coupled to receive thru a second resistive element (R2) a second output signal from a second leg (152) of the amplifier. Switches (122,128) may be responsive to a switching control signal to respective gate terminals of the switches to supply an output signal, which alternates in correspondence with a frequency of the switching control signal from a first amplitude level to a second amplitude level, which effectively provides a doubling amplification factor.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: May 6, 2014
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Mitchell, Jie Yang, Roberto Marcelo Schupbach, John R. Fraley, Cora Schillig, Bryon Western
  • Patent number: 8629783
    Abstract: In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: January 14, 2014
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Publication number: 20140009222
    Abstract: Chopper circuitry may be adapted to operate in a high-temperature environment of a turbine. A first semiconductor switch (122) may have a first terminal coupled to receive a first output signal from a first leg (148) of a differential amplifier (150). A second switch (128) may have a first terminal coupled thru a first resistive element (R1) to a second terminal of the first semiconductor switch. The first terminal of the second semiconductor switch may be coupled to receive thru a second resistive element (R2) a second output signal from a second leg (152) of the amplifier. Switches (122,128) may be responsive to a switching control signal to respective gate terminals of the switches to supply an output signal, which alternates in correspondence with a frequency of the switching control signal from a first amplitude level to a second amplitude level, which effectively provides a doubling amplification factor.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 9, 2014
    Inventors: David J. Mitchell, Jie Yang, Roberto Marcelo Schupbach, John R. Fraley, Cora Schillig, Bryon Western
  • Publication number: 20140002050
    Abstract: A voltage regulator circuitry (50) adapted to operate in a high-temperature environment of a turbine engine is provided. The voltage regulator may include a constant current source (52) including a first semiconductor switch (54) and a first resistor (56) connected between a gate terminal (G) and a source terminal (S) of the first semiconductor switch. A second resistor (58) is connected to the gate terminal of the first semiconductor switch (54) and to an electrical ground (64). The constant current source is coupled to generate a voltage reference across the second resistor 58. A source follower output stage 66 may include a second semiconductor switch (68) and a third resistor (58) connected between the electrical ground and a source terminal of the second semiconductor switch. The generated voltage reference is applied to a gating terminal of the second semiconductor switch (58).
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: David J. Mitchell, John R. Fraley, Jie Yang, Cora Schillig, Bryon Western, Roberto Marcelo Schupbach
  • Publication number: 20140002191
    Abstract: A circuitry (120) adapted to operate in a high-temperature environment of a turbine engine is provided. The circuitry may include a differential amplifier (122) having an input terminal (124) coupled to a sensing element to receive a voltage indicative of a sensed parameter. A hybrid load circuitry (125) may be AC-coupled to the differential amplifier. The hybrid load circuitry may include a resistor-capacitor circuit (134) arranged to provide a path to an AC signal component with respect to the drain terminal of the switch (e.g., 126) of a differential pair of semiconductor switches 126, 128, which receives the voltage indicative of the sensed parameter.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: David J. Mitchell, John R. Fraley, Jie Yang, Cora Schillig, Roberto Marcelo Schupbach, Bryon Western
  • Patent number: 8525036
    Abstract: A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: September 3, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Patent number: 8519866
    Abstract: A telemetry system for use in a combustion turbine engine (10) having a compressor (12), a combustor and a turbine (16) that includes a sensor (50, 74) in connection with a turbine blade (18) or vane (22). A telemetry transmitter circuit (210) may be affixed to the turbine blade (18) with a first connecting material (52, 152) deposited on the turbine blade (18) for routing electronic data signals from the sensor (50, 74) to the telemetry transmitter circuit (210), the electronic data signals indicative of a condition of the turbine blade (18). An induction power system for powering the telemetry transmitter circuit (210) may include a rotating data antenna (202) affixed to the turbine blade (18) with a second connecting material (140) deposited on the turbine blade (18) for routing electronic data signals from the telemetry transmitter circuit (210) to the rotating data antenna (202).
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: August 27, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, John R. Fraley, Roberto M. Schupbach, Alexander B. Lostetter
  • Patent number: 8458899
    Abstract: A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: June 11, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Publication number: 20130002358
    Abstract: A circuitry adapted to operate in a high-temperature environment of a turbine engine is provided. A relatively high-gain differential amplifier (102) may have an input terminal coupled to receive a voltage indicative of a sensed parameter of a component (20) of the turbine engine. A hybrid load circuitry may be coupled to the differential amplifier. A voltage regulator circuitry (244) may be coupled to power the differential amplifier. The differential amplifier, the hybrid load circuitry and the voltage regulator circuitry may each be disposed in the high-temperature environment of the turbine engine.
    Type: Application
    Filed: July 12, 2012
    Publication date: January 3, 2013
    Inventors: David J. Mitchell, John R. Fraley, Jie Yang, Cora Schillig, Bryon Western, Roberto Marcelo Schupbach
  • Publication number: 20120256761
    Abstract: In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
    Type: Application
    Filed: June 19, 2012
    Publication date: October 11, 2012
    Inventors: DAVID J. MITCHELL, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice Mcpherson, Bryon Westen
  • Patent number: 8223036
    Abstract: In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: July 17, 2012
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Patent number: 8220990
    Abstract: A circuit assembly (34) affixed to a moving part (20) of a turbine for receiving information about a condition of the part and transmitting this information external to the engine. The circuit assembly includes a high-temperature resistant package (34A) that attaches to the part. A high temperature resistant PC board (42) supports both active and passive components of the circuit, wherein a first group of the passive components are fabricated with zero temperature coefficient of resistance and a second group of the passive components are fabricated with a positive temperature coefficient of resistance. The active components are fabricated with high temperature metallization. Connectors (40) attached to the PC board pass through a wall of the package (34A) for communication with sensors (30) on the part and with an antenna (26) for transmitting data about the condition of the part to outside the turbine.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: July 17, 2012
    Assignees: Siemens Energy, Inc., Arkansas Power Electronics International, Inc.
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western
  • Publication number: 20120009056
    Abstract: A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
    Type: Application
    Filed: September 19, 2011
    Publication date: January 12, 2012
    Inventors: DAVID J. MITCHELL, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander R. Lostetter, Brice McPherson, Bryon Western
  • Publication number: 20120005891
    Abstract: A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
    Type: Application
    Filed: September 19, 2011
    Publication date: January 12, 2012
    Inventors: David J. Mitchell, Anand A. Kulkarni, Ramesh Subramanian, Edward R. Roesch, Rod Waits, Roberto Schupbach, John R. Fraley, Alexander B. Lostetter, Brice McPherson, Bryon Western