Patents by Inventor John R. Hagadorn

John R. Hagadorn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9102844
    Abstract: Disclosed herein are certain propylene-based metal polymerals and their use in modifying surfaces, and, in general, metal polymerals used in modifying surfaces. In one aspect is a metal polymeryl comprising compounds having the general formula: MR3?nR?n; wherein each R group is a hydrogen or C1 to C10 or C20 alkyl, and each R? group is selected from propylene-based polymers having an Mn of at least 300 g/mole; n is 1, 2, or 3; and M is a Group 12 or 13 metal, preferably aluminum or zinc; wherein the first portion of the R? group bound to the metal M is a —CH2CH2— group, and the terminal portion of the R? group is isobutyl. Surfaces that are modified or “solubilized” include particles of silica or alumina, glass, metal, clay and other hydroxyl-containing materials of all sizes.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: August 11, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, Patrick Brant, Donna J. Crowther, John R. Hagadorn, Gregory S. Day
  • Publication number: 20150141596
    Abstract: Pyridyldiamido transition metal complexes are disclosed for use in alkene polymerization with chain transfer agent.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 21, 2015
    Inventor: John R. Hagadorn
  • Publication number: 20150141590
    Abstract: Processes to produce ethylene copolymers using pyridyldiamido transition metal complexes, a chain transfer agent, and an activator are disclosed.
    Type: Application
    Filed: October 16, 2014
    Publication date: May 21, 2015
    Inventors: John R. Hagadorn, Liehpao O. Farng, Patrick J. Palafox, Jian Yang, Ian C. Stewart
  • Publication number: 20150141601
    Abstract: Pyridyldiamido transition metal complexes are disclosed for use in alkene polymerization.
    Type: Application
    Filed: October 10, 2014
    Publication date: May 21, 2015
    Inventors: John R. Hagadorn, Ilya S. Borisov, Arkady K. Golenishchev, Georgy P. Goryunov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov
  • Patent number: 9024034
    Abstract: This invention relates to a metathesis catalyst compound comprising an asymmetrically substituted N-heterocyclic carbene (NHC) metathesis catalyst and a process to make linear alpha-olefins comprising contacting a feed material and an optional alkene (such as ethylene) with said catalyst, where the feed material is a triacylglyceride, fatty acid, fatty acid alkyl ester, and/or fatty acid ester, typically derived from biodiesel.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: May 5, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, Matthew S. Bedoya, Catherine A. Faler, Caol P. Huff, John R. Hagadorn, Ravindra Ganesh
  • Patent number: 8940839
    Abstract: This invention relates to a composition comprising a multiblock polyolefin represented by the formula: PO—C(R11)(R12)—C(R13)?C(R14)—C(R15)(R16)—PO*, or isomers thereof, wherein R11, R12, R13, R14, R15, and R16, are each independently a substituted or unsubstituted C1 through C4 hydrocarbyl group or a hydrogen; PO and PO* are polyolefins; PO and PO* are each independently a substituted or unsubstituted hydrocarbyl group having 9 to 4000 carbon atoms, provided that at least one of PO and PO* are C20 or greater, said polyolefin having: 1) an internal unsaturation as shown by the 13C NMR peak at between about 128 and about 132 ppm; 2) an Mn ratio “Z”=0.1 to 10 where Z is the Mn (as determined by 13C NMR) divided by Mn (as determined according to Gel Permeation Chromotography using polystyrene standards); and 3) optionally, from 0.3(J) and 0.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: January 27, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Hagadorn, Charles J. Ruff, Renuka N. Ganesh, Patrick Brant
  • Publication number: 20140316089
    Abstract: Disclosed are new classes of pyridyldiamide catalyst components useful in olefin polymerization, an example of which includes: wherein M is a hafnium or zirconium; R1 and R11 are selected from phenyl and substituted phenyl, wherein the substitutions are selected from C1 to C5 hydrocarbyls, preferably C2 to C4 hydrocarbyls, and can reside in any of the ortho, meta, para positions on the phenyl ring; R2? and R2? are selected independently from hydrogen and C1 to C6 hydrocarbyls, preferably hydrogen; R10 is a hydrocarbyl bridging group; R3, R4, and R5 are independently selected from hydrogen, hydrocarbyls, and substituted hydrocarbyls; and R6, R7, R8, and R9 are independently selected from hydrogen, hydrocarbyls, and substituted hydrocarbyls; wherein R6 and R7 form an aromatic ring or R7 is hydrogen and R6 is selected from methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, and tert-butyl, preferably methyl.
    Type: Application
    Filed: April 22, 2014
    Publication date: October 23, 2014
    Inventors: John R. Hagadorn, Ilya S. Borisov, Arkady K. Golenishchev, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, Oleg V. Samsonov, Michail I. Sharikov
  • Patent number: 8841397
    Abstract: This invention relates to higher olefin vinyl terminated polymers having an Mn of at least 200 g/mol (measured by 1H NMR) including of one or more C4 to C40 higher olefin derived units, where the higher olefin vinyl terminated polymer comprises substantially no propylene derived units; and wherein the higher olefin polymer has at least 5% allyl chain ends and processes for the production thereof. These vinyl terminated higher olefin polymers may optionally include ethylene derived units.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: September 23, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, Charles J. Ruff, Donna J. Crowther, John R. Hagadorn, Patrick Brant
  • Patent number: 8841394
    Abstract: This invention relates to a vinyl terminated higher olefin copolymer having an Mn of 300 g/mol or more (measured by 1H NMR) comprising: (i) from about 20 to about 99.9 mol % of at least one C5 to C40 higher olefin monomer; and (ii) from about 0.1 to about 80 mol % of propylene; wherein the higher olefin copolymer has at least 40% allyl chain ends. The copolymer may also have an isobutyl chain end to allyl chain end ratio of less than 0.7:1 and/or an allyl chain end to vinylidene chain end ratio of greater than 2:1.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: September 23, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Matthew W. Holtcamp, John R. Hagadorn, Charles J. Ruff, George Rodriguez, Patrick Brant
  • Publication number: 20140256893
    Abstract: A process of producing ethylene a-olefin copolymers, especially ethylene block copolymers, comprising contacting ethylene and a C3 to C10 ?-olefin with a transition metal pyridyldiamide (MPN3) catalyst component and an activator, as well as from 10 equivalents to 1000 equivalents relative to the catalyst component of chain transfer agent; isolating an ethylene-?-olefin copolymer having a Tm of less than 140° C., a MWD of less than 2.5, and a weight average molecular weight (Mw) within the range of from 5 kDa to 500 kDa. The chain transfer agent can be selected from Group 2, 12 or Group 13 alkyl or aryl compounds.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 11, 2014
    Inventors: John R. Hagadorn, Jian Yang, Patrick J. Palafox
  • Patent number: 8809563
    Abstract: This invention relates to a Group 8 metal containing catalyst compound for the metathesis of olefins. This invention also relates to process to make alphaolefins comprising contacting an olefin, such as ethylene, with a feed oil containing a triacylglyceride (typically a fatty acid ester (such as methyl oleate)) with a Group 8 metal containing catalyst compound. The fatty acid ester may be a fatty acid methyl ester derived from biodiesel.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: August 19, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, Catherine A. Faler, Caol P. Huff, Matthew S. Bedoya, John R. Hagadorn
  • Patent number: 8809456
    Abstract: This invention relates to methods for producing an alkene terminated polystyrene, including: contacting a styrenic block copolymer and an alkene in the presence of a metathesis catalyst under conditions sufficient to produce an alkene terminated polystyrene having an unsaturation functionality of at least 0.7 and a MWD of about 1.5 or less. Methods for producing functionalized polymers and polyethylene blend composition comprising these functionalized polymers are also disclosed.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: August 19, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Mun F. Tse, Aspy K. Mehta, Joann M. Canich, Matthew W. Holtcamp, John R. Hagadorn, Charles J. Ruff
  • Patent number: 8802797
    Abstract: Vinyl-terminated macromonomer oligomerization, namely, a process to produce polymacromonomers comprising contacting a vinyl-terminated macromonomer with a catalyst system capable of oligomerizing vinyl-terminated macromonomer, in the presence of an aluminum containing compound, a zinc containing compound, or a combination thereof, under polymerization conditions to produce a polymacromonomer, and polymacromonomers produced thereby. Also, polymacromonomers having a degree of polymerization greater than 10, a glass transition temperature Tg of less than 60° C., and an Mn of greater than or equal to about 5000 Da.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: August 12, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R Hagadorn, Patrick Brant, Robbert Duchateau, Rafael Sablong
  • Publication number: 20140221587
    Abstract: Pyridyldiamido transition metal complexes are disclosed for use in alkene polymerization to produce polyolefins.
    Type: Application
    Filed: January 20, 2014
    Publication date: August 7, 2014
    Inventors: John R. Hagadorn, Matthew S. Bedoya, Peijun Jiang
  • Patent number: 8785562
    Abstract: The invention relates to a multiblock polyolefin, and methods to make a multiblock polyolefin, represented by the formula (X) or (XII): PO—C(R11)(R12)—C(R13)?C(R14)—C(O)—O—((CR15R16)z—(CR17R18)m—O)n—R19??(X) or PO—C(R11)(R12)—C(R13)?C(R14)—C(O)—O—((CR15R16)z—(CR17R18)mO)n—C(O)—C(R14)?C(R13)—C(R12)(R11)—PO??(XX) wherein R11, R12, R13, and R14 are each independently a substituted or unsubstituted C1 through C4 hydrocarbyl group or a hydrogen; R15, R16, R17, and R18 are each independently a substituted or unsubstituted C1 through C4 hydrocarbyl group or a hydrogen; R19 is a C1 to a C20 substituted or unsubstituted hydrocarbyl group or a hydrogen; z is ?1 to about 5; m is ?1 to about 5; PO is a polyolefin hydrocarbyl group comprising 10 to 4000 carbon atoms; and n is from 1 to about 10,000.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: July 22, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Hagadorn, Patrick Brant
  • Publication number: 20140179862
    Abstract: Disclosed herein are certain propylene-based metal polymerals and their use in modifying surfaces, and, in general, metal polymerals used in modifying surfaces. In one aspect is a metal polymeryl comprising compounds having the general formula: MR3-nR?n; wherein each R group is a hydrogen or C1 to C10 or C20 alkyl, and each R? group is selected from propylene-based polymers having an Mn of at least 300 g/mole; n is 1, 2, or 3; and M is a Group 12 or 13 metal, preferably aluminum or zinc; wherein the first portion of the R? group bound to the metal M is a —CH2CH2— group, and the terminal portion of the R? group is isobutyl. Surfaces that are modified or “solubilized” include particles of silica or alumina, glass, metal, clay and other hydroxyl-containing materials of all sizes.
    Type: Application
    Filed: December 9, 2013
    Publication date: June 26, 2014
    Inventors: Matthew W. Holtcamp, Patrick Brant, Donna J. Crowther, John R. Hagadorn, Gregory S. Day
  • Patent number: 8754170
    Abstract: The invention relates to a multiblock polyolefin, and methods to make a multiblock polyolefin, represented by the formula (X) or (XII): PO—C(R11)(R12)—C(R13)?C(R14)—C(O)—O—((CR15R16)z—(CR17R18)m—O)n—R19??(X) or PO—C(R11)(R12)—C(R13)?C(R14)—C(O)—O—((CR15R16)z—(CR17R18)mO)n—C(O)—C(R14)?C(R13)—C(R12)(R11)—PO??(XX), wherein R11, R12, R13, and R14 are each independently a substituted or unsubstituted C1 through C4 hydrocarbyl group or a hydrogen; R15, R16, R17, and R18 are each independently a substituted or unsubstituted C1 through C4 hydrocarbyl group or a hydrogen; R19 is a C1 to a C20 substituted or unsubstituted hydrocarbyl group or a hydrogen; z is ?1 to about 5; m is ?1 to about 5; PO is a polyolefin hydrocarbyl group comprising 10 to 4000 carbon atoms; and n is from 1 to about 10,000.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: June 17, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Hagadorn, Patrick Brant
  • Publication number: 20140128557
    Abstract: Supported Salan catalysts, a process comprising contacting one or more olefins with a catalyst system comprising an activator and a Salan catalyst disposed on a support, and polymers produced by the process.
    Type: Application
    Filed: October 21, 2013
    Publication date: May 8, 2014
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: Garth R. Giesbrecht, Matthew W. Holtcamp, Gregory S. Day, John R. Hagadorn
  • Patent number: 8710163
    Abstract: Pyridyldiamido transition metal complexes are disclosed for use in alkene polymerization.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: April 29, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John R. Hagadorn, Matthew S. Bedoya
  • Publication number: 20140087987
    Abstract: This invention relates to processes to produce polyethylene involving contacting ethylene with a metallocene catalyst system; wherein the catalyst system comprises: a stoichiometric activator; and a metallocene compound. The metallocene catalyst system is also disclosed.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 27, 2014
    Inventors: Donna J. Crowther, Patrick Brant, John R. Hagadorn, Jacqueline A. Lovell