Patents by Inventor John R. Klaehn
John R. Klaehn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240392409Abstract: A method of separating metals from a lithium-ion battery leachate includes obtaining a solution with iron, aluminum, nickel, and cobalt. Ammonium phosphate is added to the solution to adjust a pH of the solution to greater than or equal to about 3.00. After adjusting the pH of the solution, at least one phosphate—including iron phosphate and aluminum phosphate—is precipitated from the solution. Then, without adding a base to the solution, a crystallized nickel-cobalt Tutton's salt is precipitated from the solution.Type: ApplicationFiled: September 8, 2022Publication date: November 28, 2024Inventors: John R. Klaehn, Luis A. Diaz Aldana, Tedd E. Lister, Joshua S. McNally, Meng Shi, Daniel E. Molina Montes De Oca
-
Patent number: 12128358Abstract: A method of treating a fluid comprises introducing a feed fluid stream comprising multiple materials to first side of a semi-permeable membrane. A draw fluid stream having a higher temperature than the feed fluid stream is introduced to second, opposing side of the semi-permeable membrane to form a thermal gradient across the semi-permeable membrane. One or more of the multiple materials of the feed fluid stream is drawn through the semi-permeable membrane and into the draw fluid stream via thermal gradient osmosis. A fluid treatment system and a thermal gradient osmosis apparatus are also described.Type: GrantFiled: September 1, 2020Date of Patent: October 29, 2024Assignee: Battelle Energy Alliance, LLCInventors: Aaron D. Wilson, Christopher J. Orme, John R. Klaehn, Birendra Adhikari, Frederick F. Stewart, Seth W. Snyder
-
Patent number: 11925902Abstract: A thermally reflective membrane apparatus comprises a housing structure, and a thermally reflective membrane contained within the housing structure. The thermally reflective membrane comprises a semipermeable structure, and a porous, thermally reflective structure physically contacting the semipermeable structure. The porous, thermally reflective structure comprises discrete thermally reflective particles, and a binder material coupling the discrete thermally reflective particles to one another and the semipermeable structure. A fluid treatment system and method of treating a fluid are also described.Type: GrantFiled: September 1, 2020Date of Patent: March 12, 2024Assignee: Battelle Energy Alliance, LLCInventors: John R. Klaehn, Christopher J. Orme, Aaron D. Wilson, Birendra Adhikari, Frederick F. Stewart, Seth W. Snyder
-
Publication number: 20240055680Abstract: A method of recovering lithium from a lithium-containing material comprises introducing a lithium-containing material to an electrochemical cell, transporting lithium ions from the lithium-containing material through a cation exchange membrane to a catholyte within a cathode chamber of the electrochemical cell, reacting the lithium ions with bicarbonate ions in the cathode chamber to form lithium carbonate, and removing the lithium carbonate from the catholyte. Related methods of recovering lithium from lithium-containing, materials, and related systems are disclosed.Type: ApplicationFiled: December 15, 2021Publication date: February 15, 2024Inventors: Luis A. Diaz Aldana, Tedd E. Lister, Aaron D. Wilson, John R. Klaehn, Meng Shi
-
Publication number: 20220223932Abstract: A method of recovering active materials from a rechargeable battery comprises placing an active material of a rechargeable battery in a cathode chamber comprising a cathode of an electrochemical cell comprising the cathode chamber, an anode chamber comprising an anode, and a membrane separating the cathode chamber from the anode chamber, contacting the active material in the cathode chamber with an electrolyte comprising an acid, ferric ions, and ferrous ions, and dissolving at least one of lithium and cobalt from the active material into the electrolyte. Related apparatuses for recovering metals from active materials of rechargeable batteries are also disclosed.Type: ApplicationFiled: May 28, 2020Publication date: July 14, 2022Inventors: Joshua S. McNally, Luis A. Diaz Aldana, John R. Klaehn, Tedd E. Lister, David W, Reed
-
Publication number: 20210245112Abstract: A mixed matrix membrane comprises a support structure. The support structure comprises a glassy polymer matrix, and nanodiamond particles dispersed within the glassy polymer matrix. A gas separation membrane apparatus, a gaseous fluid treatment system, and a method of forming a mixed matrix membrane are also described.Type: ApplicationFiled: February 12, 2021Publication date: August 12, 2021Inventors: Frederick F. Stewart, Christopher J. Orme, John R. Klaehn, Birendra Adhikari, Olga Aleksandrovna Shenderova, Nicholas Austin Nunn, Marco D. Torelli, Gary Elder McGuire, Tae H. Lee, Uthamalingam Balachandran
-
Publication number: 20210060488Abstract: A method of treating a fluid comprises introducing a feed fluid stream comprising multiple materials to first side of a semi-permeable membrane. A draw fluid stream having a higher temperature than the feed fluid stream is introduced to second, opposing side of the semi-permeable membrane to form a thermal gradient across the semi-permeable membrane. One or more of the multiple materials of the feed fluid stream is drawn through the semi-permeable membrane and into the draw fluid stream via thermal gradient osmosis. A fluid treatment system and a thermal gradient osmosis apparatus are also described.Type: ApplicationFiled: September 1, 2020Publication date: March 4, 2021Applicant: Battelle Energy Alliance, LLCInventors: Aaron D. Wilson, Christopher J. Orme, John R. Klaehn, Birendra Adhikari, Frederick F. Stewart, Seth W. Snyder
-
Publication number: 20210060492Abstract: A thermally reflective membrane apparatus comprises a housing structure, and a thermally reflective membrane contained within the housing structure. The thermally reflective membrane comprises a semipermeable structure, and a porous, thermally reflective structure physically contacting the semipermeable structure. The porous, thermally reflective structure comprises discrete thermally reflective particles, and a binder material coupling the discrete thermally reflective particles to one another and the semipermeable structure. A fluid treatment system and method of treating a fluid are also described.Type: ApplicationFiled: September 1, 2020Publication date: March 4, 2021Inventors: John R. Klaehn, Christopher J. Orme, Aaron D. Wilson, Birendra Adhikari, Frederick F. Stewart, Seth W. Snyder
-
Patent number: 10367229Abstract: A phosphoranimine compound comprising a cationic portion bonded to a nitrogen atom of the phosphoranimine compound, a phosphorus atom bonded to the nitrogen atom, pendant groups bonded to the phosphorus atom, and a counterion. An electrolyte solution comprising at least one phosphoranimine compound is also disclosed, as is an energy storage device including the electrolyte solution.Type: GrantFiled: August 4, 2015Date of Patent: July 30, 2019Assignee: Battelle Energy Alliance, LLCInventors: John R Klaehn, Eric J Dufek, Joshua S McNally
-
Patent number: 9761910Abstract: An electrolyte solution comprising at least one phosphoranimine compound and a metal salt. The at least one phosphoranimine compound comprises a compound of the chemical structure where X is an organosilyl group or a tert-butyl group and each of R1, R2, and R3 is independently selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. An energy storage device including the electrolyte solution is also disclosed.Type: GrantFiled: May 22, 2015Date of Patent: September 12, 2017Assignee: Battelle Energy Alliance, LLCInventors: John R. Klaehn, Eric J. Dufek, Harry W. Rollins, Mason K. Harrup, Kevin L. Gering
-
Publication number: 20170040638Abstract: A phosphoranimine compound comprising a cationic portion bonded to a nitrogen atom of the phosphoranimine compound, a phosphorus atom bonded to the nitrogen atom, pendant groups bonded to the phosphorus atom, and a counterion. An electrolyte solution comprising at least one phosphoranimine compound is also disclosed, as is an energy storage device including the electrolyte solution.Type: ApplicationFiled: August 4, 2015Publication date: February 9, 2017Inventors: JOHN R. KLAEHN, ERIC J. DUFEK, JOSHUA S. McNALLY
-
Publication number: 20150340739Abstract: An electrolyte solution comprising at least one phosphoranimine compound and a metal salt. The at least one phosphoranimine compound comprises a compound of the chemical structure where X is an organosilyl group or a tert-butyl group and each of R1, R2, and R3 is independently selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. An energy storage device including the electrolyte solution is also disclosed.Type: ApplicationFiled: May 22, 2015Publication date: November 26, 2015Inventors: JOHN R. KLAEHN, ERIC J. DUFEK, HARRY W. ROLLINS, MASON K. HARRUP, KEVIN L. GERING
-
Patent number: 9080052Abstract: Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 ?m and about 30 ?m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.Type: GrantFiled: August 30, 2013Date of Patent: July 14, 2015Assignee: Battelle Energy Alliance, LLCInventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme
-
Publication number: 20140107265Abstract: A membrane includes a metal or coordination complex that selectively interacts with one or more materials. The membrane can be used for facilitated transport separation of the materials. The metal complex can include any suitable metal center, but preferably includes a late transition metal. The metal complex can also include any suitable ligand, but preferably includes a triphosphacyclononane. The metal complex can be covalently linked to the membrane.Type: ApplicationFiled: October 16, 2012Publication date: April 17, 2014Applicant: BATTELLE ENERGY ALLIANCE, LLCInventors: Aaron D. Wilson, John R. Klaehn, Alan K. Wertsching, Christopher J. Orme, Eric S. Peterson
-
Publication number: 20130345350Abstract: Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 ?m and about 30 ?m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.Type: ApplicationFiled: August 30, 2013Publication date: December 26, 2013Applicant: Battelle Energy Alliance, LLCInventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme
-
Patent number: 8541517Abstract: Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 ?m and about 30 ?m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.Type: GrantFiled: March 10, 2011Date of Patent: September 24, 2013Assignee: Battelle Energy Alliance, LLCInventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme
-
Publication number: 20120231253Abstract: Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 ?m and about 30 ?m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.Type: ApplicationFiled: March 10, 2011Publication date: September 13, 2012Applicant: BATTELLE ENERGY ALLIANCE, LLCInventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme
-
Patent number: 8129498Abstract: A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO—, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.Type: GrantFiled: November 1, 2007Date of Patent: March 6, 2012Assignee: Battelle Energy Alliance, LLCInventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme, Michael G. Jones, Alan K. Wertsching, Thomas A. Luther, Tammy L. Trowbridge
-
Patent number: 8063174Abstract: A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO—, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.Type: GrantFiled: November 1, 2007Date of Patent: November 22, 2011Assignee: Battelle Energy Alliance, LLCInventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme, Michael G. Jones, Alan K. Wertsching, Thomas A. Luther, Tammy L. Trowbridge
-
Publication number: 20110263813Abstract: A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO—, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.Type: ApplicationFiled: November 1, 2007Publication date: October 27, 2011Inventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme, Michael G. Jones, Alan K. Wertsching, Thomas A. Luther, Tammy L. Trowbridge