Patents by Inventor John R. Klaehn

John R. Klaehn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11925902
    Abstract: A thermally reflective membrane apparatus comprises a housing structure, and a thermally reflective membrane contained within the housing structure. The thermally reflective membrane comprises a semipermeable structure, and a porous, thermally reflective structure physically contacting the semipermeable structure. The porous, thermally reflective structure comprises discrete thermally reflective particles, and a binder material coupling the discrete thermally reflective particles to one another and the semipermeable structure. A fluid treatment system and method of treating a fluid are also described.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: March 12, 2024
    Assignee: Battelle Energy Alliance, LLC
    Inventors: John R. Klaehn, Christopher J. Orme, Aaron D. Wilson, Birendra Adhikari, Frederick F. Stewart, Seth W. Snyder
  • Publication number: 20240055680
    Abstract: A method of recovering lithium from a lithium-containing material comprises introducing a lithium-containing material to an electrochemical cell, transporting lithium ions from the lithium-containing material through a cation exchange membrane to a catholyte within a cathode chamber of the electrochemical cell, reacting the lithium ions with bicarbonate ions in the cathode chamber to form lithium carbonate, and removing the lithium carbonate from the catholyte. Related methods of recovering lithium from lithium-containing, materials, and related systems are disclosed.
    Type: Application
    Filed: December 15, 2021
    Publication date: February 15, 2024
    Inventors: Luis A. Diaz Aldana, Tedd E. Lister, Aaron D. Wilson, John R. Klaehn, Meng Shi
  • Publication number: 20220223932
    Abstract: A method of recovering active materials from a rechargeable battery comprises placing an active material of a rechargeable battery in a cathode chamber comprising a cathode of an electrochemical cell comprising the cathode chamber, an anode chamber comprising an anode, and a membrane separating the cathode chamber from the anode chamber, contacting the active material in the cathode chamber with an electrolyte comprising an acid, ferric ions, and ferrous ions, and dissolving at least one of lithium and cobalt from the active material into the electrolyte. Related apparatuses for recovering metals from active materials of rechargeable batteries are also disclosed.
    Type: Application
    Filed: May 28, 2020
    Publication date: July 14, 2022
    Inventors: Joshua S. McNally, Luis A. Diaz Aldana, John R. Klaehn, Tedd E. Lister, David W, Reed
  • Publication number: 20210245112
    Abstract: A mixed matrix membrane comprises a support structure. The support structure comprises a glassy polymer matrix, and nanodiamond particles dispersed within the glassy polymer matrix. A gas separation membrane apparatus, a gaseous fluid treatment system, and a method of forming a mixed matrix membrane are also described.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 12, 2021
    Inventors: Frederick F. Stewart, Christopher J. Orme, John R. Klaehn, Birendra Adhikari, Olga Aleksandrovna Shenderova, Nicholas Austin Nunn, Marco D. Torelli, Gary Elder McGuire, Tae H. Lee, Uthamalingam Balachandran
  • Publication number: 20210060492
    Abstract: A thermally reflective membrane apparatus comprises a housing structure, and a thermally reflective membrane contained within the housing structure. The thermally reflective membrane comprises a semipermeable structure, and a porous, thermally reflective structure physically contacting the semipermeable structure. The porous, thermally reflective structure comprises discrete thermally reflective particles, and a binder material coupling the discrete thermally reflective particles to one another and the semipermeable structure. A fluid treatment system and method of treating a fluid are also described.
    Type: Application
    Filed: September 1, 2020
    Publication date: March 4, 2021
    Inventors: John R. Klaehn, Christopher J. Orme, Aaron D. Wilson, Birendra Adhikari, Frederick F. Stewart, Seth W. Snyder
  • Publication number: 20210060488
    Abstract: A method of treating a fluid comprises introducing a feed fluid stream comprising multiple materials to first side of a semi-permeable membrane. A draw fluid stream having a higher temperature than the feed fluid stream is introduced to second, opposing side of the semi-permeable membrane to form a thermal gradient across the semi-permeable membrane. One or more of the multiple materials of the feed fluid stream is drawn through the semi-permeable membrane and into the draw fluid stream via thermal gradient osmosis. A fluid treatment system and a thermal gradient osmosis apparatus are also described.
    Type: Application
    Filed: September 1, 2020
    Publication date: March 4, 2021
    Applicant: Battelle Energy Alliance, LLC
    Inventors: Aaron D. Wilson, Christopher J. Orme, John R. Klaehn, Birendra Adhikari, Frederick F. Stewart, Seth W. Snyder
  • Patent number: 10367229
    Abstract: A phosphoranimine compound comprising a cationic portion bonded to a nitrogen atom of the phosphoranimine compound, a phosphorus atom bonded to the nitrogen atom, pendant groups bonded to the phosphorus atom, and a counterion. An electrolyte solution comprising at least one phosphoranimine compound is also disclosed, as is an energy storage device including the electrolyte solution.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: July 30, 2019
    Assignee: Battelle Energy Alliance, LLC
    Inventors: John R Klaehn, Eric J Dufek, Joshua S McNally
  • Patent number: 9761910
    Abstract: An electrolyte solution comprising at least one phosphoranimine compound and a metal salt. The at least one phosphoranimine compound comprises a compound of the chemical structure where X is an organosilyl group or a tert-butyl group and each of R1, R2, and R3 is independently selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. An energy storage device including the electrolyte solution is also disclosed.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: September 12, 2017
    Assignee: Battelle Energy Alliance, LLC
    Inventors: John R. Klaehn, Eric J. Dufek, Harry W. Rollins, Mason K. Harrup, Kevin L. Gering
  • Publication number: 20170040638
    Abstract: A phosphoranimine compound comprising a cationic portion bonded to a nitrogen atom of the phosphoranimine compound, a phosphorus atom bonded to the nitrogen atom, pendant groups bonded to the phosphorus atom, and a counterion. An electrolyte solution comprising at least one phosphoranimine compound is also disclosed, as is an energy storage device including the electrolyte solution.
    Type: Application
    Filed: August 4, 2015
    Publication date: February 9, 2017
    Inventors: JOHN R. KLAEHN, ERIC J. DUFEK, JOSHUA S. McNALLY
  • Publication number: 20150340739
    Abstract: An electrolyte solution comprising at least one phosphoranimine compound and a metal salt. The at least one phosphoranimine compound comprises a compound of the chemical structure where X is an organosilyl group or a tert-butyl group and each of R1, R2, and R3 is independently selected from the group consisting of an alkyl group, an aryl group, an alkoxy group, or an aryloxy group. An energy storage device including the electrolyte solution is also disclosed.
    Type: Application
    Filed: May 22, 2015
    Publication date: November 26, 2015
    Inventors: JOHN R. KLAEHN, ERIC J. DUFEK, HARRY W. ROLLINS, MASON K. HARRUP, KEVIN L. GERING
  • Patent number: 9080052
    Abstract: Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 ?m and about 30 ?m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: July 14, 2015
    Assignee: Battelle Energy Alliance, LLC
    Inventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme
  • Publication number: 20140107265
    Abstract: A membrane includes a metal or coordination complex that selectively interacts with one or more materials. The membrane can be used for facilitated transport separation of the materials. The metal complex can include any suitable metal center, but preferably includes a late transition metal. The metal complex can also include any suitable ligand, but preferably includes a triphosphacyclononane. The metal complex can be covalently linked to the membrane.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: Aaron D. Wilson, John R. Klaehn, Alan K. Wertsching, Christopher J. Orme, Eric S. Peterson
  • Publication number: 20130345350
    Abstract: Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 ?m and about 30 ?m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.
    Type: Application
    Filed: August 30, 2013
    Publication date: December 26, 2013
    Applicant: Battelle Energy Alliance, LLC
    Inventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme
  • Patent number: 8541517
    Abstract: Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 ?m and about 30 ?m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: September 24, 2013
    Assignee: Battelle Energy Alliance, LLC
    Inventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme
  • Publication number: 20120231253
    Abstract: Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 ?m and about 30 ?m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 13, 2012
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme
  • Patent number: 8129498
    Abstract: A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO—, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: March 6, 2012
    Assignee: Battelle Energy Alliance, LLC
    Inventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme, Michael G. Jones, Alan K. Wertsching, Thomas A. Luther, Tammy L. Trowbridge
  • Patent number: 8063174
    Abstract: A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO—, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: November 22, 2011
    Assignee: Battelle Energy Alliance, LLC
    Inventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme, Michael G. Jones, Alan K. Wertsching, Thomas A. Luther, Tammy L. Trowbridge
  • Publication number: 20110263727
    Abstract: A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO—, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.
    Type: Application
    Filed: November 1, 2007
    Publication date: October 27, 2011
    Inventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme, Michael G. Jones, Alan K. Wertsching, Thomas A. Luther, Tammy L. Trowbridge
  • Publication number: 20110263813
    Abstract: A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO—, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.
    Type: Application
    Filed: November 1, 2007
    Publication date: October 27, 2011
    Inventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme, Michael G. Jones, Alan K. Wertsching, Thomas A. Luther, Tammy L. Trowbridge
  • Patent number: 7799293
    Abstract: Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether.
    Type: Grant
    Filed: September 11, 2006
    Date of Patent: September 21, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Dean R. Peterman, John R. Klaehn, Mason K. Harrup, Richard D. Tillotson, Jack D. Law