Patents by Inventor John R. Regazzi

John R. Regazzi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240097688
    Abstract: An example frequency converter includes a drift canceling loop with a balanced delay and a linear signal path (e.g., linear with respect to frequency scaling, amplitude modulation, and/or phase modulation). One side of the drift canceling loop includes a fixed delay, and the opposite side includes an adjustable, complementary delay. The adjustable, complementary delay facilitates precision matching of the signal delays on each side of the loop over a range of frequencies, which results in a significant improvement in noise cancelation, particularly at large offsets to the carrier, while permitting the use of a higher noise, but very fast tuning course scale oscillator. The linear signal path from the signal generator to an RF output facilitates modulation of the signal by the signal generator. A modular format is an advantageous embodiment of the invention that includes the removal of the frequency synthesizer's low phase noise reference into a separate module.
    Type: Application
    Filed: April 19, 2023
    Publication date: March 21, 2024
    Applicant: Giga-tronics Incorporated
    Inventors: John R. Regazzi, Charles Lewis, Carios Fuentes
  • Patent number: 11664812
    Abstract: An example frequency converter includes a drift canceling loop with a balanced delay and a linear signal path (e.g., linear with respect to frequency scaling, amplitude modulation, and/or phase modulation). One side of the drift canceling loop includes a fixed delay, and the opposite side includes an adjustable, complementary delay. The adjustable, complementary delay facilitates precision matching of the signal delays on each side of the loop over a range of frequencies, which results in a significant improvement in noise cancelation, particularly at large offsets to the carrier, while permitting the use of a higher noise, but very fast tuning course scale oscillator. The linear signal path from the signal generator to an RF output facilitates modulation of the signal by the signal generator. A modular format is an advantageous embodiment of the invention that includes the removal of the frequency synthesizer's low phase noise reference into a separate module.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: May 30, 2023
    Assignee: Giga-tronics Incorporated
    Inventors: John R. Regazzi, Charles Lewis, Carlos Fuentes
  • Publication number: 20210091775
    Abstract: An example frequency converter includes a drift canceling loop with a balanced delay and a linear signal path (e.g., linear with respect to frequency scaling, amplitude modulation, and/or phase modulation). One side of the drift canceling loop includes a fixed delay, and the opposite side includes an adjustable, complementary delay. The adjustable, complementary delay facilitates precision matching of the signal delays on each side of the loop over a range of frequencies, which results in a significant improvement in noise cancelation, particularly at large offsets to the carrier, while permitting the use of a higher noise, but very fast tuning course scale oscillator. The linear signal path from the signal generator to an RF output facilitates modulation of the signal by the signal generator. A modular format is an advantageous embodiment of the invention that includes the removal of the frequency synthesizer's low phase noise reference into a separate module.
    Type: Application
    Filed: November 18, 2020
    Publication date: March 25, 2021
    Inventors: John R. Regazzi, Charles Lewis, Carlos Fuentes
  • Patent number: 10848163
    Abstract: An example frequency converter includes a drift canceling loop with a balanced delay and a linear signal path (e.g., linear with respect to frequency scaling, amplitude modulation, and/or phase modulation). One side of the drift canceling loop includes a fixed delay, and the opposite side includes an adjustable, complementary delay. The adjustable, complementary delay facilitates precision matching of the signal delays on each side of the loop over a range of frequencies, which results in a significant improvement in noise cancellation, particularly at large offsets to the carrier, while permitting the use of a higher noise, but very fast tuning course scale oscillator. The linear signal path from the signal generator to an RF output facilitates modulation of the signal by the signal generator. A modular format is an advantageous embodiment of the invention that includes the removal of the frequency synthesizer's low phase noise reference into a separate module.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: November 24, 2020
    Assignee: Giga-tronics Incorporated
    Inventors: John R. Regazzi, Charles Lewis, Carlos Fuentes
  • Publication number: 20200127672
    Abstract: An example frequency converter includes a drift canceling loop with a balanced delay and a linear signal path (e.g., linear with respect to frequency scaling, amplitude modulation, and/or phase modulation). One side of the drift canceling loop includes a fixed delay, and the opposite side includes an adjustable, complementary delay. The adjustable, complementary delay facilitates precision matching of the signal delays on each side of the loop over a range of frequencies, which results in a significant improvement in noise cancelation, particularly at large offsets to the carrier, while permitting the use of a higher noise, but very fast tuning course scale oscillator. The linear signal path from the signal generator to an RF output facilitates modulation of the signal by the signal generator. A modular format is an advantageous embodiment of the invention that includes the removal of the frequency synthesizer's low phase noise reference into a separate module.
    Type: Application
    Filed: December 23, 2019
    Publication date: April 23, 2020
    Applicant: Giga-tronics Incorporated
    Inventors: John R. Regazzi, Charles Lewis, Carlos Fuentes
  • Patent number: 10560110
    Abstract: An example frequency converter includes a drift canceling loop with a balanced delay and a linear signal path (e.g., linear with respect to frequency scaling, amplitude modulation, and/or phase modulation). One side of the drift canceling loop includes a fixed delay, and the opposite side includes an adjustable, complementary delay. The adjustable, complementary delay facilitates precision matching of the signal delays on each side of the loop over a range of frequencies, which results in a significant improvement in noise cancelation, particularly at large offsets to the carrier, while permitting the use of a higher noise, but very fast tuning course scale oscillator. The linear signal path from the signal generator to an RF output facilitates modulation of the signal by the signal generator. A modular format is an advantageous embodiment of the invention that includes the removal of the frequency synthesizer's low phase noise reference into a separate module.
    Type: Grant
    Filed: June 28, 2017
    Date of Patent: February 11, 2020
    Assignee: Giga-tronics Incorporated
    Inventors: John R. Regazzi, Charles Lewis, Carlos Fuentes
  • Patent number: 4733234
    Abstract: A remote calibrated power source system comprises an instrument for generating power, the instrument being positioned at a first location, and a remote calibrated power source module for outputting calibrated power, the remote module being positioned at a second location that is removed from the first location. The remote module includes power sampling means for sampling the power generated by the instrument and generating a sampled voltage, the power sampling means having inherent frequency errors, a compensation circuit for generating a frequency-varying correction voltage, and summing amplifier means for receiving both the correction voltage and the sampled voltage and generating a compensated sampled voltage.
    Type: Grant
    Filed: April 16, 1986
    Date of Patent: March 22, 1988
    Assignee: Hewlett-Packard Company
    Inventors: Stephen T. Sparks, John R. Regazzi