Patents by Inventor John R. Tuttle

John R. Tuttle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7319190
    Abstract: The present invention relates generally to the field of photovoltaics and more specifically to manufacturing thin-film solar cells using a thermal process. Specifically, a method is disclosed to manufacture a CIGS solar cell by an in-situ junction formation process.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: January 15, 2008
    Assignee: Daystar Technologies, Inc.
    Inventor: John R. Tuttle
  • Patent number: 7283035
    Abstract: An adjustable radio frequency data communications device has a monolithic semiconductor integrated circuit with integrated circuitry, interrogation receiving circuitry provided on the monolithic integrated circuit forming at least part of the integrated circuitry and configured to receive an interrogation signal from the interrogator unit, an antenna electrically coupled to the interrogation receiving circuitry and configured to communicate with the remote interrogator unit, a power source electrically coupled to the integrated circuitry and configured to generate operating power for the communications device, and at least one of the antenna and the interrogation receiving circuitry having reconfigurable electrical characteristics, the electrical characteristics being reconfigurable to selectively tune the at least one of the antenna and the interrogation receiving circuitry within a range of tuned and detuned states to realize a desired receiver sensitivity of the communications device.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: October 16, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Mark E. Tuttle, John R. Tuttle
  • Patent number: 7265674
    Abstract: A radio frequency identification (REID) device may include a first, thin, flexible sheet, an antenna, and an integrated circuit. A surface portion of the first sheet may be affixed to a second, thin, flexible sheet to form a thin, flexible label. Such a label may be affixed to an article for tracking by an interrogation system.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: September 4, 2007
    Assignee: Micron Technology, Inc.
    Inventor: John R. Tuttle
  • Patent number: 7170867
    Abstract: A radio frequency identification device includes an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: January 30, 2007
    Assignee: Micron Technology, Inc.
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, Shu-Sun Yu, David K. Ovard, Robert R. Rotzoll
  • Patent number: 7158031
    Abstract: A radio frequency indentification (RFID) label includes an integrated circuit and an antenna. The label may also include two flexible films directly sealed to each other. The label may be affixed to an article and used in conjunction with an interrogation system to track the article.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: January 2, 2007
    Assignee: Micron Technology, Inc.
    Inventor: John R. Tuttle
  • Patent number: 7079043
    Abstract: A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: July 18, 2006
    Assignee: Micron Technology, Inc.
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler E. Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, Shu-Sun Yu, David K. Ovard, Robert R. Rotzoll
  • Patent number: 7075421
    Abstract: A tire monitoring system providing tire status and notifying or warning the vehicle operator of early detection of imminent tire failure and performance degradation; thus improving safety by preventing blowouts from occurring, lengthening tire life by encouraging preventive maintenance, and improving fuel mileage by encouraging the operator to fill the tire to its proper pressure or repair it. The system monitors temperature of the rim of the wheel to which the tire is attached, such temperature being transmitted to the vehicle operator or other interested parties via means such as radio frequency.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: July 11, 2006
    Inventor: John R. Tuttle
  • Patent number: 7053294
    Abstract: A thin-film solar cell (10) is provided. The thin-film solar cell (10) comprises a flexible metallic substrate (12) having a first surface and a second surface. A back metal contact layer (16) is deposited on the first surface of the flexible metallic substrate (12). A semiconductor absorber layer (14) is deposited on the back metal contact. A photoactive film deposited on the semiconductor absorber layer (14) forms a heterojunction structure and a grid contact (24) deposited on the heterjunction structure. The flexible metal substrate (12) can be constructed of either aluminium or stainless steel. Furthermore, a method of constructing a solar cell is provided. The method comprises providing an aluminum substrate (12), depositing a semiconductor absorber layer (14) on the aluminum substrate (12), and insulating the aluminum substrate (12) from the semiconductor absorber layer (14) to inhibit reaction between the aluminum substrate (12) and the semiconductor absorber layer (14).
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: May 30, 2006
    Assignee: Midwest Research Institute
    Inventors: John R. Tuttle, Rommel Noufi, Falah S. Hasoon
  • Patent number: 7030732
    Abstract: A system for locating an individual in a facility, the system comprising a portable wireless transponder device borne by the individual; an interrogator; and a plurality of antennas distributed in the facility, the antennas being selectively separately connected to the interrogator, the interrogator when connected to any of the antennas having a communications range covering less than the area of the entire facility, the interrogator being configured to repeatedly transmit a wireless command to the portable wireless transponder device using alternating antennas, the portable wireless transponder device being configured to transmit data identifying the portable wireless transponder device in response to a command if the portable wireless transponder device is within communications range of the antenna sending the command, the individual being locatable by determining with which antenna the interrogator was able to establish communications with the portable wireless transponder device.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: April 18, 2006
    Assignee: Micron Technology, Inc.
    Inventor: John R. Tuttle
  • Patent number: 7005980
    Abstract: A personal rescue signal system (PRSS) for quickly finding a transmitting target. More specifically, the PRSS includes as a personal rescue signal device (PRSD), worn on a person and emitting a radio frequency signal in an emergency condition. The PRSD is radio frequency coupled to a receiver within a handheld device and/or base unit. The handheld device would serve in directionally locating the PRSD source signal and also for range finding of the PRSD. One main intention of the PRSS is for rescue of firefighters down, or other operations where human life can quickly be put into harm's way.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: February 28, 2006
    Inventors: Larry L. Schmidt, John R. Tuttle
  • Patent number: 6947513
    Abstract: A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: September 20, 2005
    Assignee: Micron Technology, Inc.
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler E. Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, Shu-Sun Yu, David K. Ovard, Robert R. Rotzoll
  • Patent number: 6941124
    Abstract: An amplifier powered by a selectively engageable voltage source and a method for operating the amplifier. The amplifier includes first and second electrodes for receiving an input signal to be amplified. The first and second electrodes are adapted to be respectively connected to coupling capacitors. The amplifier also includes a differential amplifier having inputs respectively connected to the first and second electrodes, and having an output. The amplifier additionally includes selectively engageable resistances coupled between the voltage source and respective inputs of the differential amplifier and defining, with the coupling capacitors, the high pass characteristics of the circuit. The amplifier further includes second selectively engageable resistances coupled between the voltage source and respective inputs of the differential amplifier.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: September 6, 2005
    Assignee: Micron Technology, Inc.
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, David K. Ovard, Shu-Sun Yu, Robert R. Rotzoll
  • Patent number: 6888502
    Abstract: An identification appliance, such as a wristband, bracelet, patch, headband, necklace, card, sticker, or other wearable appliance, has an improved patch or microstrip antenna. The microstrip antenna comprises a conductive patch layer, a conductive ground layer and a dielectric layer in between the conductive layers. The microstrip antenna is mounted to or disposed in the identification appliance, where preferably the ground layer is closest to the user and the patch layer is furthest from the user. Electronic circuits may be located in the dielectric layer, on a surface of a conductive layer, or on another part of the identification appliance. Connecting holes through the dielectric layer may allow circuits to be connected to a conductive layer or layers. This improved antenna resolves detuning and communication degradation problems.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: May 3, 2005
    Assignee: Precision Dynamics Corporation
    Inventors: Michael L. Beigel, John R. Tuttle, H. Clark Bell
  • Patent number: 6842121
    Abstract: An RFID system for verifying whether an object that has been transported to a first destination has reached its intended destination. An RFID transceiver tag is mounted on the object. The intended destination is stored in a memory within the tag. An interrogator at the first destination sends an RF interrogation signal, to which the tag responds by transmitting an RF signal containing its intended destination. The interrogator compares whether the intended destination transmitted by the tag is the same as the first destination and, if not, the interrogator signals that the object should not be delivered to the destination.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: January 11, 2005
    Assignee: Micron Technology, Inc.
    Inventor: John R. Tuttle
  • Patent number: 6836472
    Abstract: A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: December 28, 2004
    Assignee: Micron Technology, Inc.
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler E. Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, Shu-Sun Yu, David K. Ovard, Robert R. Rotzoll
  • Patent number: 6836468
    Abstract: A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: December 28, 2004
    Assignee: Micron Technology, Inc.
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, David K. Ovard
  • Publication number: 20040246099
    Abstract: The present application describes an electronically powered postage stamp or mailing label and including a radio frequency identification (RFID) device and system mounted between the opposing and facing major surfaces thereof. The RFID device and system includes an integrated circuit transceiver chip which is connected to and powered by a thin flat battery cell and is operated with a thin film RF antenna, all of which are mounted in side-by-side relationship on a thin base or support layer. These thin flat components are mounted in an essentially two dimensional planar configuration well suited for incorporation into the planar structure of a postage stamp or a mailing label. In addition, the RFID transceiver chip may be replaced with an electro-optically operated IC chip using, for example, LEDs or laser diodes for the propagation of light signals to an interrogator.
    Type: Application
    Filed: November 10, 2003
    Publication date: December 9, 2004
    Applicant: Micron Technology, Inc.
    Inventor: John R. Tuttle
  • Patent number: 6825773
    Abstract: A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Grant
    Filed: September 11, 1998
    Date of Patent: November 30, 2004
    Assignee: Micron Technology, Inc.
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, David K. Ovard, Robert R. Rotzoll, Shu-Sun Yu
  • Publication number: 20040201457
    Abstract: A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
    Type: Application
    Filed: April 12, 2004
    Publication date: October 14, 2004
    Inventors: James E. O'Toole, John R. Tuttle, Mark E. Tuttle, Tyler E. Lowrey, Kevin M. Devereaux, George E. Pax, Brian P. Higgins, Shu-sun Yu, David K. Ovard, Robert R. Rotzoll
  • Patent number: 6781508
    Abstract: An adjustable radio frequency data communications device has a monolithic semiconductor integrated circuit with integrated circuitry, interrogation receiving circuitry provided on the monolithic integrated circuit forming at least part of the integrated circuitry and configured to receive an interrogation signal from the interrogator unit, an antenna electrically coupled to the interrogation receiving circuitry and configured to communicate with the remote interrogator unit, a power source electrically coupled to the integrated circuitry and configured to generate operating power for the communications device, and at least one of the antenna and the interrogation receiving circuitry having reconfigurable electrical characteristics, the electrical characteristics being reconfigurable to selectively tune the at least one of the antenna and the interrogation receiving circuitry within a range of tuned and detuned states to realize a desired receiver sensitivity of the communications device.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: August 24, 2004
    Inventors: Mark E. Tuttle, John R. Tuttle