Patents by Inventor John R. Tuttle

John R. Tuttle has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5486431
    Abstract: A button-type battery includes: a) an anode; b) a cathode positioned adjacent to the anode.
    Type: Grant
    Filed: March 2, 1994
    Date of Patent: January 23, 1996
    Assignee: Micron Communications, Inc.
    Inventors: John R. Tuttle, Mark E. Tuttle
  • Patent number: 5448110
    Abstract: An enclosed transceiver includes an integrated circuit and a battery together laminated between two films. Printed conductors on each film couple operative power to the integrated circuit. Other-printed conductors form an antenna coupled to the transceiver for sending and receiving signals. In a preferred embodiment, the integrated circuit has three terminals. The first terminal is connected to a first side of a thin film battery. The second terminal is connected to a first side of a printed loop antenna. The third terminal serves two purposes being connected to the second side of the battery and to the second side of the loop antenna. The enclosing films are treated with silicon nitride for hermeticity. Enclosed transceivers of the present invention are suitable for mass production in web, sheet, and tape formats. Such transceivers are useful as stamps, labels, and tags in object tracking systems including systems for mail delivery, airline baggage tracking, and inventory control.
    Type: Grant
    Filed: September 14, 1993
    Date of Patent: September 5, 1995
    Assignee: Micron communications, Inc.
    Inventors: John R. Tuttle, Rickie C. Lake
  • Patent number: 5441897
    Abstract: A process for producing a slightly Cu-poor thin film of Cu(In,Ga)(Se,S).sub.2 comprises depositing a first layer of (In,Ga).sub.x (Se,S).sub.y followed by depositing just enough Cu+(Se,S) or Cu.sub.x (Se,S) to produce the desired slightly Cu-poor material. In a variation, most, but not all, (about 90 to 99%) of the (In,Ga).sub.x (Se,S).sub.y is deposited first, followed by deposition of all the Cu+(Se,S) or Cu.sub.x (Se,S) to go near stoichiometric, possibly or even preferably slightly Cu-rich, and then in turn followed by deposition of the remainder (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y to end with a slightly Cu-poor composition. In yet another variation, a small portion (about 1 to 10%) of the (In,Ga).sub.x (Se,S).sub.y is first deposited as a seed layer, followed by deposition of all of the Cu+(Se,S) or Cu.sub.x (Se,S) to make a very Cu-rich mixture, and then followed deposition of the remainder of the (In,Ga).sub.x (Se,S).sub.y to go slightly Cu-poor in the final Cu(In,Ga)(Se,S).sub.
    Type: Grant
    Filed: February 16, 1994
    Date of Patent: August 15, 1995
    Assignee: Midwest Research Institute
    Inventors: Rommel Noufi, Andrew M. Gabor, John R. Tuttle, Andrew L. Tennant, Miguel A. Contreras, David S. Albin, Jeffrey J. Carapella
  • Patent number: 5436204
    Abstract: A process for fabricating slightly Cu-poor thin-films of Cu(In,Ga)Se.sub.2 on a substrate for semiconductor device applications includes the steps of forming initially a slightly Cu-rich, phase separated, mixture of Cu(In,Ga)Se.sub.2 :Cu.sub.x Se on the substrate in solid form followed by exposure of the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture to an overpressure of Se vapor and (In,Ga) vapor for deposition on the Cu(In,Ga)Se.sub.2 :Cu.sub.x Se solid mixture while simultaneously increasing the temperature of the solid mixture toward a recrystallization temperature (about 550.degree. C.) at which Cu(In,Ga)Se.sub.2 is solid and Cu.sub.x Se is liquid. The (In,Ga) flux is terminated while the Se overpressure flux and the recrystallization temperature are maintained to recrystallize the Cu.sub.x Se with the (In, Ga) that was deposited during the temperature transition and with the Se vapor to form the thin-film of slightly Cu-poor Cu.sub.x (In,Ga).sub.y Se.sub.z.
    Type: Grant
    Filed: August 22, 1994
    Date of Patent: July 25, 1995
    Assignee: Midwest Research Institute
    Inventors: David S. Albin, Jeffrey J. Carapella, John R. Tuttle, Miguel A. Contreras, Andrew M. Gabor, Rommel Noufi, Andrew L. Tennant
  • Patent number: 5406263
    Abstract: A simple trip-wire or magnetic circuit associated with a shipping container monitors continuity, which is detected electrically. Simply, if continuity is disabled by a forced entry of the container, electrical detection means, such as a radio-frequency-identification (RFID) tag, will alert the owner or monitoring station. The trip-wire concept would require the replacing of a broken trip wire (resulting from forced entry), while the magnetic circuit concept can be reused repetitively. In a second embodiment a magnetic circuit and the detection device (RFID tag) are embedded into the shipping article during manufacturing. The preferred detection device, an RFID tag, could also be a battery backed transceiver type on which a replaceable or rechargeable battery could be mounted on the inside of the shipping container during manufacturing. The RFID tag would communicate with an interrogator unit, which could be connected to a host computer.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: April 11, 1995
    Assignee: Micron Communications, Inc.
    Inventor: John R. Tuttle
  • Patent number: 5365551
    Abstract: One or more interrogating commander stations and an unknown plurality of responding responder stations coordinate use of a common communication medium. Each commander station and each responder station is equipped to broadcast messages and to check for error in received messages. When more than one station attempts to broadcast simultaneously, an erroneous message is received and communication is interrupted. To establish uninterrupted communication, a commander station broadcasts a command causing each responder station of a potentially large first number of responder stations to each select a random number from a known range and retain it as its arbitration number. After receipt of such a command, each addressed responder station transmits a response message containing its arbitration number. Zero, one, or several responses may occur simultaneously.
    Type: Grant
    Filed: December 15, 1992
    Date of Patent: November 15, 1994
    Assignee: Micron Technology, Inc.
    Inventors: Charles K. Snodgrass, David H. Allen, John R. Tuttle, Robert R. Rotzoll, George E. Pax
  • Patent number: 5356839
    Abstract: Enhanced quality thin films of Cu.sub.w (In,Ga.sub.y)Se.sub.z for semiconductor device applications are fabricated by initially forming a Cu-rich, phase-separated compound mixture comprising Cu(In,Ga):Cu.sub.x Se on a substrate to form a large-grain precursor and then converting the excess Cu.sub.x Se to Cu(In,Ga)Se.sub.2 by exposing it to an activity of In and/or Ga, either in vapor In and/or Ga form or in solid (In,Ga).sub.y Se.sub.z. Alternatively, the conversion can be made by sequential deposition of In and/or Ga and Se onto the phase-separated precursor. The conversion process is preferably performed in the temperature range of about 300.degree.-600.degree. C., where the Cu(In,Ga)Se.sub.2 remains solid, while the excess Cu.sub.x Se is in a liquid flux. The characteristic of the resulting Cu.sub.w (In,Ga).sub.y Se.sub.z can be controlled by the temperature. Higher temperatures, such as 500.degree.-600.degree. C., result in a nearly stoichiometric Cu(In,Ga)Se.sub.
    Type: Grant
    Filed: April 12, 1993
    Date of Patent: October 18, 1994
    Assignee: Midwest Research Institute
    Inventors: John R. Tuttle, Miguel A. Contreras, Rommel Noufi, David S. Albin
  • Patent number: 5350645
    Abstract: Improved polymer batteries and improved methods of manufacturing such polymer batteries are provided. One improved method of manufacture involves the formation of a laminated array structure that includes a number of individual battery cells. After formation of the laminated array the individual batteries are singulated from the array by cutting, shearing or stamping. Other manufacturing improvements include the use of a printing process (e.g. stenciling) to form the cathodes, the use of permanent mask layers to contain and insulate the cathodes and anodes, and the use of a molten lithium deposition process for forming the anodes.
    Type: Grant
    Filed: June 21, 1993
    Date of Patent: September 27, 1994
    Assignee: Micron Semiconductor, Inc.
    Inventors: Rickie C. Lake, John R. Tuttle
  • Patent number: 5323150
    Abstract: The present invention introduces a method of reducing conductive and convective heat loss from the battery unit in battery-powered devices, such as RFID tag devices. Battery heat loss prevention is accomplished by suspending the battery in a vacuum or within a low thermally conductivity gas, such as air, nitrogen, helium or argon. Further improvement is accomplished by using a minimum number of suspension points made of solid material which possesses a low thermally conductivity. The battery can be suspended by various means, the first of which totally encapsulates the battery using the minimum number of solid material suspension points mentioned above, and the second of which only a portion of the battery (such as the lower portion) is suspended in a low thermally conductive material and the upper portion is encapsulated by the low thermally conductive material fabricated in an arching structure that does not contact the upper portion of the battery.
    Type: Grant
    Filed: June 11, 1992
    Date of Patent: June 21, 1994
    Assignee: Micron Technology, Inc.
    Inventor: John R. Tuttle
  • Patent number: 5300875
    Abstract: A concept of passively recharging the battery of battery backed electronic circuits and in particular utilizing these methods to recharge an RFID transponder's secondary cell(s). The invention particularly relates to battery backed transponders which contain rechargeable batteries wherein the recharging circuitry of the present invention allows for passive (non-contact) recharging of a battery residing in a transponder unit that may or may not be directly accessible for handling. The passive recharging strategies disclosed include utilizing energy sources such as: 1) a radio frequency (rf) signal generated outside the package; 2) a seismic geophone; 3) seismic piezoelectric accelerometers; 4) photovoltaic cells located outside of the transponder package; 5) infrared p-v cells located inside of the package driven by the heated package; and/or 5) acoustic energy (sonic and ultrasonic) coupled to the recharging circuitry via an acoustic transducer.
    Type: Grant
    Filed: June 8, 1992
    Date of Patent: April 5, 1994
    Assignee: Micron Technology, Inc.
    Inventor: John R. Tuttle
  • Patent number: 4070632
    Abstract: An improved gain control circuit for an amplifier having a plurality of parallel connected resistors each having a series switch to selectively switch the resistor into the control circuit to vary the gain incrementally as some continuous function of amplifier input voltage. In one embodiment, the parallel resistors are connected between the amplifier input and output. Alternatively, the parallel resistors may be connected as the amplifier input resistance. A peak follower circuit monitors the amplifier input and applies an output control voltage to a plurality of comparators each having a separate reference voltage. Each comparator generates an output signal when the control voltage exceeds its associated reference and this output is connected to one of the resistor switches to change the parallel resistance incrementally generating a corresponding incremental gain variation.
    Type: Grant
    Filed: September 22, 1976
    Date of Patent: January 24, 1978
    Inventor: John R. Tuttle