Patents by Inventor John Randall Phillips

John Randall Phillips has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11447799
    Abstract: Aqueous fermentation feedstock and method of producing same. The feedstock includes glucose and dextrose oligomers, wherein (i) glucose concentration is in a range between 10 gram/Liter (g/L) and 150 g/L; (ii) dextrose oligomers concentration is in a range between 50 g/L and 300 g/L; and optionally (iii) slurried particles of less than 0.5 micron; (iv) slurried particles of more than 0.5 micron, wherein a content of such suspended particles of more than 0.5 micron is less than 30 g/L; (v) ash at a concentration in a range between 20 g/L and 50 g/L; (vi) lactate at a concentration in a range between 0.5 g/L and 10 g/L; (vii) protein at a concentration in a range between 5 g/L and 50 g/L; (viii) corn oil at a concentration of less than 10 g/L; and/or (ix) glycerol at a concentration in a range between 1 g/L and 30 g/L.
    Type: Grant
    Filed: September 10, 2020
    Date of Patent: September 20, 2022
    Assignee: SUPERBREWED FOOD INC.
    Inventors: Bryan P. Tracy, John Randall Phillips, Daniel Knox Mitchell
  • Publication number: 20210386091
    Abstract: Provided is a composition comprising a) butyrate and b) a by-product of fermentation of a carbon source-containing feedstock with a Clostridia class bacterium which natively produces butyric acid. Further provided are a feed ingredient, an animal feed and an anti-icing product comprising the composition, methods of manufacturing and uses thereof.
    Type: Application
    Filed: August 24, 2021
    Publication date: December 16, 2021
    Inventors: Bryan P. TRACY, Daniel Knox MITCHELL, John Randall PHILLIPS, Alon KARPOL, Aharon M. EYAL
  • Patent number: 10934562
    Abstract: Integrated mixotrophic fermentation method comprising (i) an isolated naturally acetogenic organism; (ii) a first feedstock comprising a carbon source for use in a fermentation medium; (iii) a second feedstock comprising elemental hydrogen for use in the fermentation medium; wherein the second feedstock comprises performing electrolysis; and (iv) culturing the organism in the fermentation medium, whereby both feedstocks are metabolized and a fermentation broth is formed, which broth comprises at least one bioproduct.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: March 2, 2021
    Assignee: White Dog Labs, Inc.
    Inventors: Bryan Patrick Tracy, Sasson R. Somekh, John Randall Phillips, Aharon M. Eyal
  • Patent number: 10883123
    Abstract: An integrated wet-mill method for the production of ethanol and single cell protein. An integrated method for the production of ethanol and a single cell protein product is described including providing corn kernels, which kernels comprise germ, fiber, protein and starch and which method includes, among other things, steeping said corn kernels and separating said steeped kernels from a steep liquor.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: January 5, 2021
    Assignee: White Dog Labs, Inc.
    Inventors: Bryan P. Tracy, Shawn William Jones, John Randall Phillips, Daniel Knox Mitchell, Aharon M. Eyal
  • Publication number: 20200407760
    Abstract: Aqueous fermentation feedstock and method of producing same. The feedstock includes glucose and dextrose oligomers, wherein (i) glucose concentration is in a range between 10 gram/Liter (g/L) and 150 g/L; (ii) dextrose oligomers concentration is in a range between 50 g/L and 300 g/L; and optionally (iii) slurried particles of less than 0.5 micron; (iv) slurried particles of more than 0.5 micron, wherein a content of such suspended particles of more than 0.5 micron is less than 30 g/L; (v) ash at a concentration in a range between 20 g/L and 50 g/L; (vi) lactate at a concentration in a range between 0.5 g/L and 10 g/L; (vii) protein at a concentration in a range between 5 g/L and 50 g/L; (viii) corn oil at a concentration of less than 10 g/L; and/or (ix) glycerol at a concentration in a range between 1 g/L and 30 g/L.
    Type: Application
    Filed: September 10, 2020
    Publication date: December 31, 2020
    Inventors: Bryan P. TRACY, John Randall PHILLIPS, Daniel Knox MITCHELL
  • Patent number: 10640792
    Abstract: Controlling the gas inlet flow rate and energy input to a fermentation reactor to maximize conversion of syngas by maximizing uptake of hydrogen into a medium relative to carbon dioxide and carbon monoxide based on determined volumetric mass transfer coefficients for hydrogen, carbon monoxide, and carbon dioxide.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: May 5, 2020
    Assignee: The Board of Regents for Oklahoma State University
    Inventors: Hasan K. Atiyeh, John Randall Phillips, Raymond L. Huhnke
  • Publication number: 20200063091
    Abstract: Single cell protein products and an integrated method for the production of ethanol and single cell protein. A single-cell protein product comprising on dry basis between 62% by weight and 75% by weight crude protein, at least 0.2% by weight butyric acid and at least three of, at least four of or all five of (i) between 5.5% by weight and 6.9% by weight lysine; (ii) between 2.1% by weight and 3.5% by weight methionine; (iii) between 3.1% by weight and 4.4% by weight threonine; (iv) between 2.0% by weight and 3.3% by weight tryptophan and (v) between 2.5% by weight and 4.5% by weight crude fat.
    Type: Application
    Filed: November 4, 2019
    Publication date: February 27, 2020
    Inventors: Bryan P. TRACY, Shawn William JONES, John Randall PHILLIPS, Daniel Knox MITCHELL, Aharon M. EYAL
  • Publication number: 20190144892
    Abstract: Integrated mixotrophic fermentation method comprising (i) an isolated naturally acetogenic organism; (ii) a first feedstock comprising a carbon source for use in a fermentation medium; (iii) a second feedstock comprising elemental hydrogen for use in the fermentation medium; wherein the second feedstock comprises performing electrolysis; and (iv) culturing the organism in the fermentation medium, whereby both feedstocks are metabolized and a fermentation broth is formed, which broth comprises at least one bioproduct.
    Type: Application
    Filed: May 23, 2017
    Publication date: May 16, 2019
    Applicant: White Dog Labs, Inc.
    Inventors: Bryan Patrick TRACY, Sasson R. SOMEKH, John Randall PHILLIPS, Aharon M. EYAL
  • Publication number: 20180355384
    Abstract: An integrated wet-mill method for the production of ethanol and single cell protein. An integrated method for the production of ethanol and a single cell protein product is described including providing corn kernels, which kernels comprise germ, fiber, protein and starch and which method includes, among other things, steeping said corn kernels and separating said steeped kernels from a steep liquor.
    Type: Application
    Filed: June 7, 2018
    Publication date: December 13, 2018
    Applicant: White Dog Labs, Inc.
    Inventors: Bryan P. TRACY, Shawn William JONES, John Randall PHILLIPS, Daniel Knox MITCHELL, Aharon M. EYAL
  • Patent number: 10053711
    Abstract: Providing a microbial catalyst in a reaction broth, providing an adsorptive solid into the reaction broth, providing a producer gas into the reaction broth, and obtaining a fermentation product from the reaction broth resulting from activity of the microbial catalyst in the presence of the adsorptive solid.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: August 21, 2018
    Assignees: THE BOARD OF REGENTS FOR OKLAHOMA STATE UNIVERSITY, BRIGHAM YOUNG UNIVERSITY
    Inventors: Hasan K. Atiyeh, Randy S. Lewis, John Randall Phillips, Raymond L. Huhnke
  • Patent number: 10017789
    Abstract: According to an embodiment, there is provided herein a system and method wherein knowledge of the syngas fermentation is combined with standard instrumentation to provide a stable control of gas supply to automatically poise the fermentation to provide both high conversion of CO and H2, and high selectivity for production of ethanol. The control is based on an automatic feedback loop that corrects for operational imbalance and maintains a stable continuous fermentation required for commercial operation. In a further embodiment, feed of syngas to ethanol fermentation can be optimally controlled using the pH of the broth as the input variable for flow control of the gas. This concept will automatically maintain the correct supply of syngas to the fermentation, and provide stable operation at optimal rates.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: July 10, 2018
    Assignee: The Board Of Regents For Oklahoma State University
    Inventors: Hasan K. Atiyeh, John Randall Phillips, Raymond L. Huhnke
  • Publication number: 20170356012
    Abstract: Controlling the gas inlet flow rate and energy input to a fermentation reactor to maximize conversion of syngas by maximizing uptake of hydrogen into a medium relative to carbon dioxide and carbon monoxide based on determined volumetric mass transfer coefficients for hydrogen, carbon monoxide, and carbon dioxide.
    Type: Application
    Filed: November 13, 2015
    Publication date: December 14, 2017
    Inventors: Hasan K. Atiyeh, John Randall Phillips, Raymond L. Huhnke
  • Publication number: 20160281114
    Abstract: According to an embodiment, there is provided herein a system and method wherein knowledge of the syngas fermentation is combined with standard instrumentation to provide a stable control of gas supply to automatically poise the fermentation to provide both high conversion of CO and H2, and high selectivity for production of ethanol. The control is based on an automatic feedback loop that corrects for operational imbalance and maintains a stable continuous fermentation required for commercial operation. In a further embodiment, feed of syngas to ethanol fermentation can be optimally controlled using the pH of the broth as the input variable for flow control of the gas. This concept will automatically maintain the correct supply of syngas to the fermentation, and provide stable operation at optimal rates.
    Type: Application
    Filed: March 25, 2016
    Publication date: September 29, 2016
    Inventors: Hasan K. Atiyeh, John Randall Phillips, Raymond L. Huhnke
  • Publication number: 20160215303
    Abstract: Providing a microbial catalyst in a reaction broth, providing an adsorptive solid into the reaction broth, providing a producer gas into the reaction broth, and obtaining a fermentation product from the reaction broth resulting from activity of the microbial catalyst in the presence of the adsorptive solid.
    Type: Application
    Filed: August 4, 2014
    Publication date: July 28, 2016
    Applicants: BRIGHAM YOUNG UNIVERSITY, THE BOARD OF REGENTS FOR OKLAHOMA STATE UNIVERSITY
    Inventors: Hasan K. Atiyeh, Randy S. Lewis, John Randall Phillips, Raymond L. Huhnke
  • Patent number: 8647851
    Abstract: A stable continuous method for producing ethanol from the anaerobic bacterial fermentation of a gaseous substrate containing at least one reducing gas involves culturing in a fermentation bioreactor anaerobic, acetogenic bacteria in a liquid nutrient medium; supplying the gaseous substrate to the bioreactor; and manipulating the bacteria in the bioreactor by reducing the redox potential, or increasing the NAD(P)H TO NAD(P) ratio, in the fermentation broth after the bacteria achieves a steady state and stable cell concentration in the bioreactor. The free acetic acid concentration in the bioreactor is maintained at less than 5 g/L free acid. This method allows ethanol to be produced in the fermentation broth in the bioreactor at a productivity of greater than 10 g/L per day. Both ethanol and acetate are produced in a ratio of ethanol to acetate ranging from 1:1 to 20:1.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: February 11, 2014
    Assignee: Ineos Bio Limited
    Inventors: James L. Gaddy, Dinesh K. Arora, Ching-Whan Ko, John Randall Phillips, Rahul Basu, Carl V. Wikstrom, Edgar C. Clausen
  • Patent number: 8642302
    Abstract: A stable continuous method for producing ethanol from the anaerobic bacterial fermentation of a gaseous substrate containing at least one reducing gas involves culturing in a fermentation bioreactor anaerobic, acetogenic bacteria in a liquid nutrient medium; supplying the gaseous substrate to the bioreactor; and manipulating the bacteria in the bioreactor by reducing the redox potential, or increasing the NAD(P)H TO NAD(P) ratio, in the fermentation broth after the bacteria achieves a steady state and stable cell concentration in the bioreactor. The free acetic acid concentration in the bioreactor is maintained at less than 5 g/L free acid. This method allows ethanol to be produced in the fermentation broth in the bioreactor at a productivity of greater than 10 g/L per day. Both ethanol and acetate are produced in a ratio of ethanol to acetate ranging from 1:1 to 20:1.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: February 4, 2014
    Assignee: Ineos Bio Limited
    Inventors: James L. Gaddy, Dinesh K. Arora, Ching-Whan Ko, John Randall Phillips, Rahul Basu, Carl V. Wilkstrom, Edgar C. Clausen
  • Patent number: 8642301
    Abstract: A stable continuous method for producing ethanol from the anaerobic bacterial fermentation of a gaseous substrate containing at least one reducing gas involves culturing in a fermentation bioreactor anaerobic, acetogenic bacteria in a liquid nutrient medium; supplying the gaseous substrate to the bioreactor; and manipulating the bacteria in the bioreactor by reducing the redox potential, or increasing the NAD(P)H TO NAD(P) ratio, in the fermentation broth after the bacteria achieves a steady state and stable cell concentration in the bioreactor. The free acetic acid concentration in the bioreactor is maintained at less than 5 g/L free acid. This method allows ethanol to be produced in the fermentation broth in the bioreactor at a productivity of greater than 10 g/L per day. Both ethanol and acetate are produced in a ratio of ethanol to acetate ranging from 1:1 to 20:1.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: February 4, 2014
    Assignee: Ineos Bio Limited
    Inventors: James L. Gaddy, Dinesh K. Arora, Ching-Whan Ko, John Randall Phillips, Rahul Basu, Carl V. Wilkstrom, Edgar C. Clausen
  • Patent number: 8574879
    Abstract: A stable continuous method for producing ethanol from the anaerobic bacterial fermentation of a gaseous substrate containing at least one reducing gas involves culturing in a fermentation bioreactor anaerobic, acetogenic bacteria in a liquid nutrient medium; supplying the gaseous substrate to the bioreactor; and manipulating the bacteria in the bioreactor by reducing the redox potential, or increasing the NAD(P)H TO NAD(P) ratio, in the fermentation broth after the bacteria achieves a steady state and stable cell concentration in the bioreactor. The free acetic acid concentration in the bioreactor is maintained at less than 5 g/L free acid. This method allows ethanol to be produced in the fermentation broth in the bioreactor at a productivity of greater than 10 g/L per day. Both ethanol and acetate are produced in a ratio of ethanol to acetate ranging from 1:1 to 20:1.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: November 5, 2013
    Assignee: Ineos Bio Limited
    Inventors: James L. Gaddy, Dinesh K. Arora, Ching-Whan Ko, John Randall Phillips, Rahul Basu, Carl V. Wilkstrom, Edgar C. Clausen
  • Publication number: 20120122173
    Abstract: A stable continuous method for producing ethanol from the anaerobic bacterial fermentation of a gaseous substrate containing at least one reducing gas involves culturing in a fermentation bioreactor anaerobic, acetogenic bacteria in a liquid nutrient medium; supplying the gaseous substrate to the bioreactor; and manipulating the bacteria in the bioreactor by reducing the redox potential, or increasing the NAD(P)H TO NAD(P) ratio, in the fermentation broth after the bacteria achieves a steady state and stable cell concentration in the bioreactor. The free acetic acid concentration in the bioreactor is maintained at less than 5 g/L free acid. This method allows ethanol to be produced in the fermentation broth in the bioreactor at a productivity of greater than 10 g/L per day. Both ethanol and acetate are produced in a ratio of ethanol to acetate ranging from 1:1 to 20:1.
    Type: Application
    Filed: December 13, 2011
    Publication date: May 17, 2012
    Applicant: INEOS BIO LIMITED
    Inventors: James L. GADDY, Dinesh K. ARORA, Ching-Whan KO, John Randall PHILLIPS, Rahul BASU, Carl V. WIKSTROM, Edgar C. CLAUSEN
  • Publication number: 20120115198
    Abstract: A stable continuous method for producing ethanol from anaerobic fermentation of a gaseous substrate containing at least one reducing gas in a liquid nutrient medium; supplying the gaseous substrate to the bioreactor. The free acetic acid concentration in the bioreactor is maintained at less than 5 g/L free acid. This method allows ethanol to be produced in the fermentation broth in the bioreactor at a productivity of greater than 10 g/L per day. Both ethanol and acetate are produced in a ratio of ethanol to acetate ranging from 1:1 to 20:1.
    Type: Application
    Filed: December 20, 2011
    Publication date: May 10, 2012
    Applicant: INEOS BIO LIMITED
    Inventors: James L. Gaddy, Dinesh K. Arora, Ching-Whan Ko, John Randall Phillips, Rahul Basu, Carl V. Wilkstrom, Edgar C. Clausen