Patents by Inventor John Rasmus

John Rasmus has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160237811
    Abstract: A system for drilling a subterranean wellbore includes a bottom hole assembly (BHA) coupled to a downhole end of a drill string. The BHA includes an electronic controller having a processor. The drill string includes downhole and uphole portions with the downhole portion made up of wired drill pipe and the uphole portion made up of non-wired drill pipe. The downhole portion further includes at least one downhole tool or sensor sub in communication with the BHA via the wired drill pipe communication link. Methods for making sensor measurements, downlinking data and/or commands to the BHA, and actuating a downhole tool make use of the system.
    Type: Application
    Filed: February 16, 2015
    Publication date: August 18, 2016
    Inventors: Christopher Paul Reed, Steven Hough, John Rasmus, David Kirk Conn, Brian Oliver Clark
  • Patent number: 9404327
    Abstract: A method identifying a wellbore volume change while drilling a subterranean wellbore includes acquiring first and second axially spaced pressure measurements in the wellbore. The wellbore volume change may include, for example, a borehole washout or a borehole pack-off. The pressure measurements may then be processed to obtain an interval density of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of interval densities corresponding to various wellbore intervals. The interval densities may be measured while drilling and may be further evaluated as an indicator of a wellbore volume change.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: August 2, 2016
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: John Rasmus, William Lesso, John James
  • Patent number: 9394783
    Abstract: A method for evaluating inflow or outflow in a subterranean wellbore includes acquiring first and second axially spaced pressure measurements in the wellbore. The pressure measurements may then be processed to obtain an interval density of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of interval densities corresponding to various wellbore intervals. The interval density may be measured during static conditions or while drilling and may be further processed to compute a density of an inflow constituent in the annulus. Changes in the computed interval density with time may be used as an indicator of either an inflow event or an outflow event.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: July 19, 2016
    Assignee: Schlumberger Technology Corporation
    Inventors: John Rasmus, William Lesso, John James
  • Publication number: 20160186556
    Abstract: A method and system for evaluation of a hydrocarbon-bearing shale formation employs a data processing system that defines a response model that relates first data representing measured petrophysical properties of the shale formation at a given location to second data representing volume fractions for a particular set of formation components at the given location. The first data includes hydrogen index at the given location, and the particular set of formation components of the second data include a number of mineral components and a number of hydrocarbon-bearing components. The hydrocarbon-bearing components include at least one kerogen component. A computation solver processes the response model along with the first data to solve for the second data. The solved second data representing the volume fraction of the at least one kerogen component is processed to derive at least one ratio that is indicative of kerogen maturity at the given location.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 30, 2016
    Inventors: John Rasmus, Richard E. Lewis, David Handwerger, Jack LaVigne
  • Publication number: 20160187521
    Abstract: An electromagnetic measurement tool for making multi-frequency, full tensor, complex, electromagnetic measurements includes a triaxial transmitter and a triaxial receiver deployed on a tubular member. An electronic module is configured to obtain electromagnetic measurements at four or more distinct frequencies. The measurement tool may be used for various applications including obtaining a resistivity of sand layers in an alternating shale-sand formation; computing a dielectric permittivity, a conductivity anisotropy, and/or a permittivity anisotropy of a formation sample; and/or identifying formation mineralization including discriminating between pyrite and graphite inclusions and/or computing weight percent graphite and/or pyrite in the formation sample.
    Type: Application
    Filed: August 17, 2015
    Publication date: June 30, 2016
    Inventors: Dean Homan, John Rasmus, Gerald Minerbo, Siddharth Misra, Aditya Gupta
  • Publication number: 20160139293
    Abstract: A method for determining a level of organic maturity of a shale gas formation includes inverting multifrequency complex conductivity data to estimate a volume fraction of graphite, turbostatic carbon nanostructures, and pyrite. The inversion is validated using estimates of the volume fraction of graphite, turbostatic carbon nanostructures, and pyrite. The volume fraction of graphite and turbostatic carbon nanostructures is correlated to a level of organic maturity log of the shale gas formation. The level of organic maturity log is validated using sulfur content obtained from pyrolysis or vitrinite reflectance. A variation of an electromagnetic response due to the volume fraction of graphite, turbostatic carbon nanostructures, and pyrite is quantified. The electromagnetic response is modified by removing the quantified variation to obtain resistivity and permittivity values.
    Type: Application
    Filed: November 18, 2015
    Publication date: May 19, 2016
    Inventors: Siddharth Misra, John Rasmus, Dean Homan, Carlos Torres-Verdin
  • Publication number: 20160139231
    Abstract: A method for calibrating an electromagnetic core analysis tool is disclosed. The method includes disposing a tilted test loop inside of or outside of a tool having more than one antenna. A uniform test pack, a layered test pack, and an effective media test pack are each disposed in the tool. A signal is induced in a receiver antenna in the tool when a second antenna is energized with a known current of a known frequency. The induced signal is measured and a calibration gain and offset is determined. A corrected signal is produced and compared with the determined signal based on a forward model.
    Type: Application
    Filed: November 18, 2015
    Publication date: May 19, 2016
    Inventors: Dean Homan, Siddharth Misra, John Rasmus, Gerald N. Minerbo
  • Publication number: 20160053608
    Abstract: Systems and methods identify and/or detect one or more features of a well casing by utilizing one or more downhole measurements obtainable by a downhole component. The one or more features of the well casing are identifiable and/or detectable from the one or more measurements associated with one or more properties of the one or more features of the well casing.
    Type: Application
    Filed: November 2, 2015
    Publication date: February 25, 2016
    Inventors: Najmud Dowla, John Rasmus, Abhijeet Nayan, Taesoo Kim, Richard J. Radtke, Michael Evans
  • Publication number: 20160002991
    Abstract: A method for estimating equivalent top of fluid level or a theoretical surface annular back pressure in a subterranean wellbore includes acquiring first and second axially spaced pressure measurements in the wellbore. The pressure measurements may then be processed to compute the equivalent top of fluid level and/or theoretical surface annular back pressure of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of values corresponding to various wellbore intervals. The equivalent top of fluid level and/or theoretical surface annular back pressures may be used in automated managed pressure drilling operations.
    Type: Application
    Filed: August 6, 2015
    Publication date: January 7, 2016
    Inventors: John Rasmus, William Lesso, John James
  • Patent number: 9228430
    Abstract: A method evaluating a cuttings density while drilling a subterranean wellbore includes acquiring first and second axially spaced pressure measurements in the wellbore. The pressure measurements may then be processed to obtain an interval density of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of interval densities corresponding to various wellbore intervals. The interval density may be measured while drilling and may be further processed to compute a cuttings density in the annulus. Moreover, changes in the computed interval density with time while drilling may be used as an indicator of a change in cuttings density.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: January 5, 2016
    Assignee: Schlumberger Technology Corporation
    Inventors: John Rasmus, William Lesso, John James, Edward M. Tollefsen, Scott Paul, Amanda L. Weber, Marcus Turner
  • Patent number: 9134451
    Abstract: A method for estimating equivalent top of fluid level or a theoretical surface annular back pressure in a subterranean wellbore includes acquiring first and second axially spaced pressure measurements in the wellbore. The pressure measurements may then be processed to compute the equivalent top of fluid level and/or theoretical surface annular back pressure of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of values corresponding to various wellbore intervals. The equivalent top of fluid level and/or theoretical surface annular back pressures may be used in automated managed pressure drilling operations.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: September 15, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: John Rasmus, William Lesso, John James
  • Publication number: 20140353037
    Abstract: A method includes accepting as input to a processor measurements of a characteristic of a subsurface formation made at a plurality of spaced apart positions along a pipe string moved along a wellbore. Measurements are made of pipe string depth in the wellbore from the Earth's surface. The measurements of pipe string depth include measurements of apparent depth of each of the spaced apart locations. The subsurface formation is identified from the measurements of the characteristic. A true depth of the subsurface formation is made using the measurements of pipe string depth and apparent depth of the formation from each of the spaced apart positions. A record of measurements of the characteristic with respect to depth corrected for changes in length of the pipe string caused by axial forces along the pipe string is generated.
    Type: Application
    Filed: May 22, 2014
    Publication date: December 4, 2014
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: John Rasmus, George Bordakov
  • Patent number: 8857510
    Abstract: A system and a method determine movement of a drilling component, such as, for example, a tool, a drill bit or other wellbore device, within a wellbore. The system and method may process information obtained from the wellbore by using, for example, a numerical processing algorithm. The information may be data acquired during drilling of the wellbore. Rig surface data recording systems may track the position of the drill bit, the BHA and/or other component of the drill string during the time the component is within the wellbore. Downhole measuring devices may record data at various positions along the BHA and above the drill bit as a function of time.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: October 14, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: John Rasmus, John James, William Lesso
  • Publication number: 20140286539
    Abstract: Methods and apparatus for characterizing a subterranean formation traversed by a wellbore including collecting data from the formation using a tool wherein the tool collects data to form an azimuthal image, characterizing a section of the formation comprising data and images acquired in a high angle wellbore section or horizontal wellbore section using a parametric model, and performing an inversion using apparent densities and volumetric photoelectric factor images to build a formation model wherein the inversion is tailored for high angle wellbore sections and/or horizontal wellbore sections.
    Type: Application
    Filed: October 24, 2012
    Publication date: September 25, 2014
    Inventors: Sushil Shetty, Dzevat Omeragic, Tarek M. Habashy, John Rasmus, Jeffrey Miles
  • Patent number: 8645068
    Abstract: A downhole tool and method for determining a parameter of a formation as a function of radial distance from the borehole into the formation. The tool comprising a nuclear source for irradiating the formation and a plurality of sensors each independently measuring a density of the formation at a different radial depth into the formation. A processor combines the density measurements for determining the parameter of the formation as a function of radial distance.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: February 4, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Michael Evans, John Rasmus, Richard Radtke
  • Publication number: 20130090855
    Abstract: A method for evaluating inflow or outflow in a subterranean wellbore includes acquiring first and second axially spaced pressure measurements in the wellbore. The pressure measurements may then be processed to obtain an interval density of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of interval densities corresponding to various wellbore intervals. The interval density may be measured during static conditions or while drilling and may be further processed to compute a density of an inflow constituent in the annulus. Changes in the computed interval density with time may be used as an indicator of either an inflow event or an outflow event.
    Type: Application
    Filed: August 14, 2012
    Publication date: April 11, 2013
    Inventors: John Rasmus, William Lesso, John James
  • Publication number: 20130090854
    Abstract: A method identifying a wellbore volume change while drilling a subterranean wellbore includes acquiring first and second axially spaced pressure measurements in the wellbore. The wellbore volume change may include, for example, a borehole washout or a borehole pack-off. The pressure measurements may then be processed to obtain an interval density of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of interval densities corresponding to various wellbore intervals. The interval densities may be measured while drilling and may be further evaluated as an indicator of a wellbore volume change.
    Type: Application
    Filed: August 14, 2012
    Publication date: April 11, 2013
    Inventors: John Rasmus, William Lesso, John James
  • Publication number: 20130048380
    Abstract: A method for estimating one or more interval densities in a subterranean wellbore includes acquiring first and second axially spaced pressure measurements in the wellbore. The pressure measurements may then be processed to obtain an interval density of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of interval densities corresponding to various wellbore intervals.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 28, 2013
    Inventors: John Rasmus, William Lesso, John James, Edward M. Tollefsen, Scott Paul, Amanda L. Weber, Marcus Turner, Paul Bolchover
  • Publication number: 20130047696
    Abstract: A method for estimating equivalent top of fluid level or a theoretical surface annular back pressure in a subterranean wellbore includes acquiring first and second axially spaced pressure measurements in the wellbore. The pressure measurements may then be processed to compute the equivalent top of fluid level and/or theoretical surface annular back pressure of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of values corresponding to various wellbore intervals. The equivalent top of fluid level and/or theoretical surface annular back pressures may be used in automated managed pressure drilling operations.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 28, 2013
    Inventors: John Rasmus, William Lesso, John James
  • Publication number: 20130049983
    Abstract: A method for a hydraulic model for subterranean drilling fluids includes acquiring first and second axially spaced temperature and pressure measurements in the wellbore. The pressure measurements may be processed to obtain an interval density of drilling fluid between the measurement locations. A tool string including a large number of axially spaced pressure sensors (e.g., four or more or even six or more) electronically coupled with a surface processor via wired drill pipe may be used to obtain a plurality of interval densities corresponding to various wellbore intervals. The interval density(ies) may be processed in combination with the temperature and pressure measurements to compute one or more unknown coefficients of the hydraulic model.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 28, 2013
    Inventors: John Rasmus, John James, Paul Bolchover