Patents by Inventor John Redvers Clowes

John Redvers Clowes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9564731
    Abstract: A method of providing supercontinuum illumination in applications involving the excitation of fluorescence, comprising generating, at an optical pump laser, optical pump pulses at a pump pulse repetition rate; selectively controlling with an optical modulator the launch of pump pulses into a nonlinear optical element comprising an optical fiber at a variable, lower repetition rate to thereby selectively control the repetition rate of supercontinuum pulses generated within the optical fiber; and illuminating a sample with supercontinuum pulses to excite fluorescence. The supercontinuum pulses can be wavelength filtered such that the fluorescence is excited with wave length filtered supercontinuum pulses.
    Type: Grant
    Filed: March 10, 2013
    Date of Patent: February 7, 2017
    Assignee: Fianium Ltd.
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey
  • Patent number: 9531153
    Abstract: Optical pulse source, for generating optical supercontinuum pulses, comprising: an optical pump laser operable to generate a number of optical pump pulses at a pump pulse repetition rate; a nonlinear optical element arranged to receive optical pump pulses and configured to generate therefrom optical supercontinuum pulses; and a gating device provided between the pump laser and the nonlinear optical element and operable to selectively limit the number of optical pump pulses received by the nonlinear optical element in order to generate optical supercontinuum pulses at a user selectable repetition rate lower than the pump pulse repetition rate, wherein the optical pulse source further comprises a second gating device provided after the nonlinear optical element.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: December 27, 2016
    Assignee: Fianium Ltd.
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey
  • Publication number: 20160294147
    Abstract: A pulse conditioning apparatus can comprise a signal splitter for splitting a pulsed input signal into first and second pulsed signals; a spectrally dispersive element configured for subjecting the first pulsed signal to a spectral dispersion for compressing or stretching the first pulsed signal, the first and second pulsed signals being subjected to substantially different spectral dispersion; and a combiner for combining the first and second pulsed signals to an output pulsed signal, the output pulsed signal output comprising pulses having a surge pulse portion and a base pulse portion, at least one of the portions derived at least in part from the spectral dispersion and attendant compression or stretching of the first pulsed signal.
    Type: Application
    Filed: February 7, 2016
    Publication date: October 6, 2016
    Inventors: John Redvers Clowes, Paulo Almeida, Anatoly Borisovich Grudinin, Pascal Dupriez, Christophe Codemard
  • Publication number: 20160276800
    Abstract: The invention can include an optical pulse source apparatus that includes the nonlinear generation of wavelengths, wherein the optical pulse source can comprise an oscillator for producing optical pulses, the optical pulses having a first wavelength; an optical fiber amplifier for amplifying optical pulses having the first wavelength; a nonlinear optical fiber receiving amplified optical pulses having the first wavelength to nonlinearly produce optical pulses that include wavelengths that are different than the first wavelength; and wherein the optical pulse source is configured so as to be operable to reduce the optical pulse frequency of the nonlinearly produced optical pulses.
    Type: Application
    Filed: February 6, 2016
    Publication date: September 22, 2016
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey, Kestutis Vysniauskas
  • Publication number: 20160268759
    Abstract: A supercontinuum optical pulse source provides a combined supercontinuum. The supercontinuum optical pulse source comprises one or more seed pulse sources, and first and second optical amplifiers arranged along first and second respective optical paths. The first and second optical amplifiers are configured to amplify one or more optical signals generated by said one or more seed pulse sources. The supercontinuum optical pulse source further comprises a first microstructured light-guiding member arranged along the first optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said first optical path, and a second microstructured light-guiding member arranged along the second optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said second optical path.
    Type: Application
    Filed: January 31, 2016
    Publication date: September 15, 2016
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Adam Devine
  • Patent number: 9300105
    Abstract: A pulsed fiber laser apparatus for outputting picosecond laser pulses can comprise a fiber delivered pulsed seed laser for providing picosecond optical seed pulses, and at least one optical fiber amplifier in optical communication with the fiber delivered pulsed seed laser. The optical fiber amplifier can comprise a gain optical fiber that receives and optically amplifies picosecond optical pulses by operating in a nonlinear regime wherein the picosecond optical pulses can be spectrally broadened by a factor of at least 8 during amplification thereof. The apparatus can further comprise a pulse compressor apparatus in optical communication with the optical fiber amplifier for providing compressed picosecond optical pulses.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: March 29, 2016
    Assignee: Fianium Ltd.
    Inventors: John Redvers Clowes, Paulo Almeida, Anatoly Borisovich Grudinin, Pascal Dupriez, Christophe Codemard
  • Patent number: 9287677
    Abstract: The invention can include an optical pulse source for providing optical output pulses, comprising a master oscillator comprising a mode locked fiber oscillator producing optical pulses having an optical pulse frequency; at least one optical fiber amplifier optically coupled to the master oscillator, the at least one optical amplifier including a final optical fiber amplifier; a bulk optic amplifier element optically coupled to the output of the final optical fiber amplifier; a nonlinear optical fiber for nonlinearly producing light, the nonlinear optical fiber optically coupled to the output of the bulk optic amplifier element; an optical pulse compressor optically coupled to the output of the nonlinear optical fiber; and a pulse picker operable to reduce the optical pulse frequency of the optical output pulses to be less than the optical pulse frequency of the optical pulses produced by the master oscillator.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: March 15, 2016
    Assignee: Fianium Ltd.
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey, Kestutis Vysniauskas
  • Publication number: 20160072251
    Abstract: An optical system comprises an optical apparatus arranged to direct received light to different paths and to provide a first signal and a second signal, said first and second signals having an optical difference therebetween sufficient for distinguishing optical signals, an amplifier in optical communication with the optical apparatus for amplifying the first and second signals, and a discrimination device to receive amplified light and to provide output light responsive to the optical difference.
    Type: Application
    Filed: July 15, 2015
    Publication date: March 10, 2016
    Inventors: John Redvers Clowes, Christophe Codemard, Pascal Dupriez
  • Patent number: 9276371
    Abstract: A supercontinuum optical pulse source provides a combined supercontinuum. The supercontinuum optical pulse source comprises one or more seed pulse sources, and first and second optical amplifiers arranged along first and second respective optical paths. The first and second optical amplifiers are configured to amplify one or more optical signals generated by said one or more seed pulse sources. The supercontinuum optical pulse source further comprises a first microstructured light-guiding member arranged along the first optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said first optical path, and a second microstructured light-guiding member arranged along the second optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said second optical path.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: March 1, 2016
    Assignee: Fianium Ltd
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Adam Devine
  • Publication number: 20160036196
    Abstract: A modelocked laser for generating pulses comprises a laser cavity, wherein the laser cavity comprises a length of hollow core fiber and wherein the length of hollow core fiber is such that the laser cavity supports a repetition rate of the generated pulses below 5 MHz.
    Type: Application
    Filed: June 3, 2015
    Publication date: February 4, 2016
    Inventors: John Redvers Clowes, Paulo Almeida, Anatoly Borisovich Grudinin
  • Patent number: 9246296
    Abstract: An optical apparatus comprising an optical source for providing output light for providing input signal light can comprise a pump source for pumping a four wave mixing (FWM) process with light pulses (“FWM pump light”); a FWM element in optical communication with said pump source, said FWM element configured for hosting the FWM process to generate, responsive to the FWM pump light, pulses of FWM signal light and FWM idler light having different wavelengths; and a laser or amplifier optical device comprising a gain material for providing optical gain at a gain wavelength via a process of stimulated emission responsive to optical pumping with pump light, said laser or amplifier optical device in optical communication with said optical source and receiving one of the FWM signal light and the FWM idler light as input signal light having the gain wavelength for optically seeding with input signal light the laser or amplifier optical device.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: January 26, 2016
    Assignee: Fianium Ltd
    Inventors: John Redvers Clowes, Michael Yarrow
  • Patent number: 9172200
    Abstract: A source of femtosecond optical pulses comprises a seed pulse source arranged to generate seed pulses; an optical amplifier downstream of the seed pulse source, the optical amplifier having a gain bandwidth; a nonlinear optical element downstream of the amplifier, the optical element spectrally broadening optical pulses via a non linear process to have a spectral bandwidth that exceeds the gain bandwidth of the optical amplifier; and a pulse compressor downstream of the nonlinear optical element and arranged to reduce the temporal duration of optical pulses so as to provide output optical pulses having a femtoseconds time duration.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: October 27, 2015
    Assignee: Fianium Ltd.
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Pascal Dupriez
  • Publication number: 20150303644
    Abstract: A laser system for generating optical pulses at an operating wavelength of the laser system. The system has an optical resonator comprising first and second reflectors, and a tapered optical fiber disposed between the first and second reflectors. The tapered optical fiber has a core which has a tapered input section which tapers from single mode to multimode at the laser operating wavelength, an inner section of substantially constant diameter capable of supporting multiple modes at the laser operating wavelength and a tapered output section which tapers from a first diameter to a second diameter that is smaller than the first diameter.
    Type: Application
    Filed: February 11, 2015
    Publication date: October 22, 2015
    Inventors: John Redvers Clowes, Jonathan William Gill, Stephen Green, Mridu Kalita, Adam Lee Devine, Anatoly Borisovich Grudinin
  • Patent number: 9158177
    Abstract: A supercontinuum optical source comprises a laser source apparatus comprising at least one laser, the laser source apparatus configured for providing first and second signals; a modulator apparatus downstream of at least one laser of the laser source apparatus for modulating at least one of the first and second signals, the modulator apparatus including at least one modulator; a combiner downstream of the modulator apparatus for combining the first and second signals; an amplifier downstream of the combiner for amplifying the first and second signals after combination; a nonlinear element downstream of the amplifier for receiving the first and second signals after amplification, the nonlinear optical element providing spectral broadening responsive to the first signal and wherein the second signal does not substantially contribute to spectral broadening; and an output for outputting spectrally broadened light from the optical supercontinuum source.
    Type: Grant
    Filed: November 24, 2011
    Date of Patent: October 13, 2015
    Assignee: Fianium Ltd.
    Inventors: John Redvers Clowes, Christophe Codemard, Pascal Dupriez
  • Publication number: 20150225891
    Abstract: A method of cleaning a substrate (16, 24, 34, 64, 71, 82, 102, 165, 171, 181, 201, 300, 310) with optical energy can comprise applying optical energy from a source of optical energy (12, 21, 31, 91, 103, 114, 121, 131, 141, 151, 164, 191, 202) to the substrate. The method can comprise applying the optical energy to a substrate having a cleaning agent applied thereto, the optical energy having one or more optical parameters selected for cleaning the substrate. The method can comprise reading data from a data bearing element (173) associated with the substrate, communicating the data to a processor (154) associated with a cleaning appliance (10, 30, 40, 60, 70, 80, 90, 110, 120, 130, 140, 150, 161, 200) comprising the source of optical energy, wherein the processor, responsive to the communicated data, controls the cleaning of the substrate with the optical energy.
    Type: Application
    Filed: January 8, 2015
    Publication date: August 13, 2015
    Inventor: John Redvers Clowes
  • Publication number: 20150218746
    Abstract: Disclosed are methods and apparatus for cleaning a substrate, such as a fabric material, involving the application of optical energy to the substrate, typically in the form of a beam of light, where the energy of the beam causes removal of the contaminant from substrate, such as from the fibres of a fabric material. The cleaning may occur via any mechanism, including one or more of, alone or in any combination, ablation, melting, heating or reaction with the substrate or contaminant or agent introduced to aid in the cleaning. The optical energy is typically applied to a selected area of the substrate (e.g., as a beam), and the substrate and beam or optical energy source moved relative to one another so as to clean a larger area of the substrate, either by moving the substrate or the beam, or both. Movement of the beam with respect to the substrate can be attained through a beam scanning mechanism or through movement of the optical source itself.
    Type: Application
    Filed: January 5, 2015
    Publication date: August 6, 2015
    Inventor: John Redvers Clowes
  • Patent number: 9071033
    Abstract: A laser system for generating optical pulses at an operating wavelength of the laser system. The system has an optical resonator comprising first and second reflectors, and a tapered optical fiber disposed between the first and second reflectors. The tapered optical fiber has a core which has a tapered input section which tapers from single mode to multimode at the laser operating wavelength, an inner section of substantially constant diameter capable of supporting multiple modes at the laser operating wavelength. The tapered optical fiber can include a tapered output section wherein the core tapers from a first diameter to a second diameter that is smaller than the first diameter.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: June 30, 2015
    Assignee: Fianium Ltd.
    Inventors: John Redvers Clowes, Jonathan William Gill, Stephen Green, Mridu Kalita, Adam Lee Devine, Anatoly Borisovich Grudinin
  • Publication number: 20150131144
    Abstract: The invention can include and optical pulse source, comprising a master oscillator comprising a mode locked fibre oscillator producing optical pulses having an optical pulse frequency; at least one optical fibre amplifier optically coupled to the master oscillator, the at least one optical amplifier including a final optical fibre amplifier; a bulk optic amplifier optically coupled to the output of the final optical fibre amplifier; a nonlinear optical fibre for nonlinearly producing light, the nonlinear optical fibre optically coupled to the output of the bulk optic element; an optical pulse compressor optically coupled to the output of the nonlinear optical fibre; and a pulse picker operable to reduce the optical pulse frequency of optical pulses.
    Type: Application
    Filed: December 1, 2014
    Publication date: May 14, 2015
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey, Kestutis Vysniauskas
  • Patent number: 9020000
    Abstract: Optical pulse source comprising optical pump laser for generating optical pump pulses at repetition rate Rf; a nonlinear optical element comprising an optical fiber for generating supercontinuum pulses; a gating device provided operable to selectively control the launch of pump pulses into the optical fiber at a reduced, lower repetition rate Rr=Rf/N in order to generate supercontinuum pulses at different user selectable repetition rates lower than the pump pulse repetition rate; first and second optical amplifiers; wavelength tunable optical bandpass filter; wherein the optical fiber can generate supercontinuum pulses having a supercontinuum spanning from below 450 nm to greater than 2000 nm; and wherein said optical pulse source comprises an all-fiber source wherein said optical pump laser comprises a fiber oscillator, said gating device comprises a fiber coupled optical modulator, and the optical pump pulses are launched into the optical fiber without the use of free space optics.
    Type: Grant
    Filed: March 10, 2013
    Date of Patent: April 28, 2015
    Assignee: Fianium Ltd.
    Inventors: John Redvers Clowes, Anatoly Borisovich Grudinin, Ian Michael Godfrey
  • Patent number: 9008135
    Abstract: A method of tuning the time duration of laser output pulses, the method including spectrally dispersing optical pulses and further comprising providing an optical pulse having a time duration and a spectral bandwidth; spectrally dispersing (243, 245) the optical pulse so as to provide a selected change in the time duration of the pulse responsive to the spectral bandwidth of the pulse; outputting (226) an optical output pulse having a first time duration that is responsive to the selected change in time duration; providing another optical pulse; changing the amount of spectral bandwidth of the another optical pulse (272) to be different than that of the optical pulse or changing the amount of spectral dispersion so that spectrally dispersing the another optical pulse provides a change in time duration that is different than the selected change; and outputting (226) another optical output pulse having a second time duration that is responsive to the different change in time duration, the second time duration o
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: April 14, 2015
    Assignee: Fianium Ltd.
    Inventors: Paulo Almeida, John Redvers Clowes, Pascal Dupriez, Anatoly Borisovich Grudinin