Patents by Inventor John Reidy
John Reidy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250197617Abstract: Techniques for debinding additively fabricated parts are described that do not require solvent debinding or catalytic debinding, and that may be performed using only thermal debinding in a furnace. As a result, in at least some cases debinding and sintering may take place sequentially within a single furnace. In some embodiments, the techniques may utilize particular materials as binders that allow for a thermal debinding process that does not negatively affect the parts.Type: ApplicationFiled: July 23, 2024Publication date: June 19, 2025Applicant: Desktop Metal, Inc.Inventors: John Reidy, Christopher Craven, Nihan Tuncer, Animesh Bose, Alexander C. Barbati, Ricardo Fulop, Brian D. Kernan, Karl-Heinz Schofalvi
-
Patent number: 12257623Abstract: Methods of additive manufacturing using noble metals and/or copper metal, and binder compositions for use during the additive manufacturing methods, are generally described. In some instances, the methods of additive manufacturing include de-binding (and in some cases sintering steps) that afford metal-based composites, de-bound metal structures, and metal objects containing noble metals (e.g., silver, gold, platinum) and/or copper that have improved properties, such as relatively high densities. In certain aspects, combinations of certain metal powders (e.g., noble metal and/or copper powders) with certain binder compositions may result in improved properties of resulting metal objects produced by the additive manufacturing process, such as relatively low surface roughnesses. The binder compositions described may include a low molecular weight polymer (e.g., including an acrylic acid repeat unit) and, in some cases, a cross-linking agent.Type: GrantFiled: December 2, 2020Date of Patent: March 25, 2025Assignee: Desktop Metal, Inc.Inventors: Ilya L. Rushkin, Shannon Lee Taylor, Yun Bai, John Reidy
-
Publication number: 20240424572Abstract: Systems and methods for providing inert manufacturing and processing environments. In certain embodiments, a build box having green parts that were manufactured via binder jetting additive manufacturing is sealed with a lid and heat cured in an oven. A supply of process gas is delivered to the build box to provide an inert environment within the build box during the heating process, which results in an exhaust of gaseous species from the build box and prevents contamination from the ambient environment. In certain embodiments, copper-alloy parts are manufactured via binder jetting additive manufacturing in an inert environment to achieve higher final densities after post-processing and sintering.Type: ApplicationFiled: September 13, 2022Publication date: December 26, 2024Applicant: Desktop Metal, Inc.Inventors: George Hudelson, Emanuel M Sachs, Jamison Go, Luke Jorgensen, John Reidy
-
Patent number: 12077660Abstract: Techniques for debinding additively fabricated parts are described that do not require solvent debinding or catalytic debinding, and that may be performed using only thermal debinding in a furnace. As a result, in at least some cases debinding and sintering may take place sequentially within a single furnace. In some embodiments, the techniques may utilize particular materials as binders that allow for a thermal debinding process that does not negatively affect the parts.Type: GrantFiled: November 13, 2020Date of Patent: September 3, 2024Assignee: Desktop Metal, Inc.Inventors: John Reidy, Christopher Craven, Nihan Tuncer, Animesh Bose, Alexander C. Barbati, Ricardo Fulop, Brian D. Kernan, Karl-Heinz Schofalvi
-
Publication number: 20240207063Abstract: The techniques described herein relate to a prosthesis assembly. The prosthesis assembly may include a femoral component, a tibial bearing component engaged by the femoral component and a tibial baseplate. The tibial baseplate can include a bushing received in a recess in the tibial baseplate and a hinge post coupled to the femoral component and the bushing. The hinge post can be at least partially received by the bushing. A prosthesis assembly may include a capture element coupled to the tibial baseplate. The capture element can be engaged by at least one of the bushing or the hinge post to limit distraction of the femoral component from the tibial bearing component and tibial baseplate.Type: ApplicationFiled: December 4, 2023Publication date: June 27, 2024Inventors: Tim Yoko, Jeffery A. VanDiepenbos, Brian D. Byrd, Joshua Barker, Jeff Blaylock, John Reidy
-
Publication number: 20240207058Abstract: A prosthesis assembly may include a femoral component, a tibial bearing component engaged by the femoral component and a tibial baseplate. The prosthesis assembly may include a hinge post coupled to the femoral component and at least partially received in a recess in the tibial baseplate. The prosthesis assembly may include a bushing received in a recess in the tibial baseplate. The hinge post is at least partially received by the bushing and the bushing includes one or more engagement features configured to couple the bushing to the hinge post.Type: ApplicationFiled: December 4, 2023Publication date: June 27, 2024Inventors: Tim Yoko, Joshua Barker, John Reidy, Jeffery A. VanDiepenbos, Jeff Blaylock, David Meadows, Brian D. Byrd
-
Publication number: 20240207056Abstract: A prosthesis assembly can include a tibial tray, a tibial bearing component, a hinge post, a femoral component, a shackle, walls, a hinge axle, and a bump stop. The hinge post can extend through the tibial bearing component and be at least partially received in a recess of the tibial tray. The femoral component can contact an articular surface of the tibial bearing component. The shackle can be coupled to the hinge post and configured to be inserted between a medial and a lateral condyle of the femoral component. The walls can be positioned between the femoral component and the shackle. The hinge axle can be configured to secure the femoral component to the shackle. The bump stop can be removably attached to the femoral component and configured to contact the shackle at a set limit of rotation of the femoral component relative to the tibial bearing component.Type: ApplicationFiled: December 1, 2023Publication date: June 27, 2024Inventors: Tim Yoko, Joshua Barker, Scott Dykema, Douglas Murray Vernon, Brian D. Byrd, John Reidy
-
Publication number: 20240207055Abstract: A prosthesis system may include a femoral component, a tibial bearing component configured to articulate with the femoral component, a baseplate, a plurality of bushings, one or more hinge posts and a capture element. The capture element can be configured to couple with the baseplate and can have a thru hole configured to allow at least a portion of the one or more hinge posts to pass therethrough. When coupled to the baseplate, the capture element is configured to be engaged by at least one of the plurality of bushings or one of the one or more hinge posts to limit distraction of the femoral component from the tibial bearing component and baseplate.Type: ApplicationFiled: December 4, 2023Publication date: June 27, 2024Inventors: Tim Yoko, Jeffery A. VanDiepenbos, BrIan D. Byrd, Joshua Barker, David Meadows, Jeff Blaylock, John Reidy
-
Publication number: 20210260654Abstract: Techniques for debinding additively fabricated parts are described that do not require solvent debinding or catalytic debinding, and that may be performed using only thermal debinding in a furnace. As a result, in at least some cases debinding and sintering may take place sequentially within a single furnace. In some embodiments, the techniques may utilize particular materials as binders that allow for a thermal debinding process that does not negatively affect the parts.Type: ApplicationFiled: January 26, 2021Publication date: August 26, 2021Applicant: Desktop Metal, Inc.Inventors: John Reidy, Nihan Tuncer, Animesh Bose, Christopher Craven, Alexander C. Barbati, Ricardo Fulop, Karl-Heinz Schofalvi
-
Publication number: 20210162502Abstract: Methods of additive manufacturing using noble metals and/or copper metal, and binder compositions for use during the additive manufacturing methods, are generally described. In some instances, the methods of additive manufacturing include de-binding (and in some cases sintering steps) that afford metal-based composites, de-bound metal structures, and metal objects containing noble metals (e.g., silver, gold, platinum) and/or copper that have improved properties, such as relatively high densities. In certain aspects, combinations of certain metal powders (e.g., noble metal and/or copper powders) with certain binder compositions may result in improved properties of resulting metal objects produced by the additive manufacturing process, such as relatively low surface roughnesses. The binder compositions described may include a low molecular weight polymer (e.g., including an acrylic acid repeat unit) and, in some cases, a cross-linking agent.Type: ApplicationFiled: December 2, 2020Publication date: June 3, 2021Applicant: Desktop Metal, Inc.Inventors: Ilya L. Rushkin, Shannon Lee Taylor, Yun Bai, John Reidy
-
Publication number: 20210147665Abstract: Techniques for debinding additively fabricated parts are described that do not require solvent debinding or catalytic debinding, and that may be performed using only thermal debinding in a furnace. As a result, in at least some cases debinding and sintering may take place sequentially within a single furnace. In some embodiments, the techniques may utilize particular materials as binders that allow for a thermal debinding process that does not negatively affect the parts.Type: ApplicationFiled: November 13, 2020Publication date: May 20, 2021Applicant: Desktop Metal, Inc.Inventors: John Reidy, Christopher Craven, Nihan Tuncer, Animesh Bose, Alexander C. Barbati, Ricardo Fulop, Brian D. Kernan, Karl-Heinz Schofalvi
-
Patent number: 9158727Abstract: An exemplary method and system of addressing an integrated circuit within a daisy chain network. In the exemplary method, the address of the integrated circuit may be initialized to a predetermined initial address. The integrated circuit may receive a command that includes a type identifier and an address field. Based on the type identifier, the type of command may be determined. As a result of the determination, reading the address from the address field. The read address may be stored in a register. The address may be modified, and may be output. Upon receipt of the data or a command, the integrity of the data including data within the received command, may be confirmed by an error checking algorithm.Type: GrantFiled: April 30, 2010Date of Patent: October 13, 2015Assignee: ANALOG DEVICES, INC.Inventors: Jeremy Gorbold, James Gibbons, Tadhg Creedon, Katherine O'Riordan, John Reidy, John Morrissey
-
Patent number: 7223280Abstract: A stent for occluding the human ductus arteriosus comprises a length of wire of shape memory effect or superelastic material which is expandable from a relatively straightened state for introduction into the patient to an occluding state wherein the wire defines an occluding anchor part and a spiral anchor part and a straight linking part connecting the two wherein the wire has a series of turns extending over the cross-sectional area of the occluding anchor part.Type: GrantFiled: January 28, 2002Date of Patent: May 29, 2007Assignee: Anson Medical LimitedInventors: Anthony Walter Anson, Peter William Phillips, John Reidy, Shakeel Qureshi
-
Patent number: 6432134Abstract: A stent for occluding the human ductus arteriosus comprises a length of wire of shape memory effect or superelastic material which is expandable from a relatively straightened state for introduction into the patient to an occluding state wherein the wire defines an occluding anchor part and a spiral anchor part and a straight linking part connecting the two wherein the wire has a series of turns extending over the cross-sectional area of the occluding anchor part.Type: GrantFiled: August 16, 1999Date of Patent: August 13, 2002Assignee: Anson Medical LimitedInventors: Anthony Walter Anson, Peter William Phillips, John Reidy, Shakeel Qureshi
-
Publication number: 20020099437Abstract: A stent for occluding the human ductus arteriosus comprises a length of wire of shape memory effect or superelastic material which is expandable from a relatively straightened state for introduction into the patient to an occluding state wherein the wire defines an occluding anchor part and a spiral anchor part and a straight linking part connecting the two wherein the wire has a series of turns extending over the cross-sectional area of the occluding anchor part.Type: ApplicationFiled: January 28, 2002Publication date: July 25, 2002Inventors: Anthony Walter Anson, Peter William Phillips, John Reidy, Shakeel Qureshi
-
Patent number: 5619204Abstract: An IC chip having an analog-to-digital converter together with control circuitry for effecting switchover between normal-power mode and low-power mode. The control circuitry includes a first D-type flip-flop with reset which receives on its "D" input a continuous high signal; on its differential clock inputs the flip-flop receives complementary logic signals derived from the "conversion start" (CONVST) signal applied to one pin of an 8-pin chip. In normal mode, the CONVST signal is a short pulse having an initial negative-going (falling) leading edge, and the flip-flop responds to that leading edge by producing a high Q output (CONVEN). This signals the A/D converter to carry out a conversion. In low-power mode, the CONVST short pulse is positive. The subsequent negative-going (falling) trailing edge of the pulse activates the flip-flop to cause its Q output to go high and turn on the A/D converter.Type: GrantFiled: February 27, 1995Date of Patent: April 8, 1997Assignee: Analog Devices, IncorporatedInventors: Michael Byrne, Colin Price, John Reidy, Simon Smith
-
Patent number: D918242Type: GrantFiled: September 27, 2019Date of Patent: May 4, 2021Assignee: Fiddler Labs IncInventors: Amit Paka, John Reidy, Krishna Gade