Patents by Inventor John Richard Ridge

John Richard Ridge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11820698
    Abstract: Coated glass articles for a glass-ceramic ceramming process including a parting agent coated on a surface of the glass article. The parting agent coating can comprise an aqueous dispersion comprising amorphous silicon dioxide agglomerate particles and a dispersant. The parting agent coating can be dried to forming a parting layer for glass articles in a glass stack for a ceramming process that transforms the glass articles into glass-ceramic articles.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: November 21, 2023
    Assignee: Corning Incorporated
    Inventors: Jill Marie Hall, Mallanagouda Dyamanagouda Patil, John Richard Ridge, Elizabeth Margaret Wheeler, Michael Aaron Zahradka, Christine Marie Ziegenfus
  • Publication number: 20230242438
    Abstract: A glass ceramic article including a lithium disilicate crystalline phase, a petalite crystalline phased, and a residual glass phase. The glass ceramic article has a warp (?m)<(3.65×10?9/?m×diagonal2) where diagonal is a diagonal measurement of the glass ceramic article in ?m, a stress of less than 30 nm of retardation per mm of glass ceramic article thickness, a haze (%)<0.0994t+0.12 where t is the thickness of the glass ceramic article in mm, and an optical transmission (%)>0.91×10(2-0.03t) of electromagnetic radiation wavelengths from 450 nm to 800 nm, where t is the thickness of the glass ceramic article in mm.
    Type: Application
    Filed: April 11, 2023
    Publication date: August 3, 2023
    Inventors: Carol Ann Click, James Howard Edmonston, Qiang Fu, Jill Marie Hall, Mathieu Gerard Jacques Hubert, Dhananjay Joshi, Andrew Peter Kittleson, Katherine Weber Kroemer, Galan Gregory Moore, Rohit Rai, John Richard Ridge, John Robert Saltzer, JR., Charlene Marie Smith, Erika Lynn Stapleton, Matthew Daniel Trosa, Ljerka Ukrainczyk, Shelby Kerin Wilson, Bin Yang, Zheming Zheng
  • Patent number: 11649187
    Abstract: A glass ceramic article including a lithium disilicate crystalline phase, a petalite crystalline phased, and a residual glass phase. The glass ceramic article has a warp (?m)<(3.65×10?9/?m×diagonal2) where diagonal is a diagonal measurement of the glass ceramic article in ?m, a stress of less than 30 nm of retardation per mm of glass ceramic article thickness, a haze (%)<0.0994t+0.12 where t is the thickness of the glass ceramic article in mm, and an optical transmission (%)>0.91×10(2?0.03t) of electromagnetic radiation wavelengths from 450 nm to 800 nm, where t is the thickness of the glass ceramic article in mm.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: May 16, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Carol Ann Click, James Howard Edmonston, Qiang Fu, Jill Marie Hall, Mathieu Gerard Jacques Hubert, Dhananjay Joshi, Andrew Peter Kittleson, Katherine Weber Kroemer, Galan Gregory Moore, Rohit Rai, John Richard Ridge, John Robert Saltzer, Jr., Charlene Marie Smith, Erika Lynn Stapleton, Matthew Daniel Trosa, Ljerka Ukrainczyk, Shelby Kerin Wilson, Bin Yang, Zheming Zheng
  • Publication number: 20230076143
    Abstract: A glass-based article with a textured surface exhibiting low haze is provided. The glass-based articles are produced by utilizing a combination of abrasion and etching, where hydrofluoric acid is not utilized. The process for producing the glass-based articles also includes an ion exchange process.
    Type: Application
    Filed: August 23, 2022
    Publication date: March 9, 2023
    Inventors: John Steele Abbott, III, Melanie Lian Geiger, Yuhui Jin, Aize Li, Qiao Li, Kevin Barry Reiman, John Richard Ridge, Wei Sun
  • Patent number: 11400691
    Abstract: A method of forming a 3D glass article from a glass sheet includes locating the glass sheet on a mold assembly including a mold surface with a 3D surface profile corresponding to that of the 3D glass article. The glass sheet is heated to a forming temperature. The forming temperature is greater than a temperature of the mold surface. The heated glass sheet is forced onto the mold surface by applying a pressurized gas to a first surface of the glass sheet opposite the mold surface to conform the glass sheet to the mold surface with the glass sheet at the forming temperature that is greater than the temperature of the mold surface.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: August 2, 2022
    Assignee: CORNING INCORPORATED
    Inventors: Marianne Griesbach Park, John Richard Ridge, Ljerka Ukrainczyk
  • Patent number: 11208346
    Abstract: A process for forming a textured 3-D glass-based substrate includes texturing a first surface of a glass-based substrate and shaping the glass-based substrate into a three-dimensional shape. The surface profile of the substrate is non-planar. In some embodiments, texturing the first surface of the glass-based substrate provides the first surface with an average roughness of 10 nm to 2000 nm.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: December 28, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Jill Marie Hall, Yuhui Jin, Timothy James Kiczenski, John Richard Ridge, Ljerka Ukrainczyk
  • Publication number: 20210380462
    Abstract: Coated glass articles for a glass-ceramic ceramming process including a parting agent coated on a surface of the glass article. The parting agent coating can comprise an aqueous dispersion comprising amorphous silicon dioxide agglomerate particles and a dispersant. The parting agent coating can be dried to forming a parting layer for glass articles in a glass stack for a ceramming process that transforms the glass articles into glass-ceramic articles.
    Type: Application
    Filed: June 2, 2021
    Publication date: December 9, 2021
    Inventors: JILL MARIE HALL, Mallanagouda Dyamanagouda Patil, John Richard Ridge, Elizabeth Margaret Wheeler, Michael Aaron Zahradka, Christine Marie Ziegenfus
  • Patent number: 11136255
    Abstract: Embodiments disclosed herein include systems and methods for controlling material warp that include placing the shaped mold in a heating device, forming a glass material into a shaped mold, and cooling the glass material and the shaped mold to a predetermined viscosity of the glass material. Some embodiments include, a predetermined time prior to removing the glass material and the shaped mold from the heating device, holding the glass at the mold in the heating device where the heating device temperature is substantially equal to mold and glass temperature just prior to exiting to ambient temperature. Some embodiments include removing the glass material and the shaped mold from the heating device to further cool the glass material and the shaped mold at ambient temperature, where after removing the glass material and the shaped mold from the heating device, the glass material will exhibit controlled or desired material warp.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: October 5, 2021
    Assignee: Corning Incorporated
    Inventors: Antoine Gaston Denis Bisson, Kevin Patrick McNelis, Rohit Rai, John Richard Ridge, Ljerka Ukrainczyk
  • Patent number: 11084751
    Abstract: A method includes contacting a glass sheet with a forming surface to form a shaped glass article. An effective viscosity of the glass sheet during the contacting step is less than a contact viscosity of the glass sheet in contact with the forming surface during the contacting step.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: August 10, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Thierry Luc Alain Dannoux, Vladislav Yuryevich Golyatin, John Richard Ridge, Ljerka Ukrainczyk, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20210238083
    Abstract: A glass ceramic article including a lithium disilicate crystalline phase, a petalite crystalline phased, and a residual glass phase. The glass ceramic article has a warp (?m)<(3.65×10?9/?m×diagonal2) where diagonal is a diagonal measurement of the glass ceramic article in ?m, a stress of less than 30 nm of retardation per mm of glass ceramic article thickness, a haze (%)<0.0994t+0.12 where t is the thickness of the glass ceramic article in mm, and an optical transmission (%)>0.91×10(2?0.03t) of electromagnetic radiation wavelengths from 450 nm to 800 nm, where t is the thickness of the glass ceramic article in mm.
    Type: Application
    Filed: April 22, 2021
    Publication date: August 5, 2021
    Applicant: CORNING INCORPORATED
    Inventors: Carol Ann Click, James Howard Edmonston, Qiang Fu, Jill Marie Hall, Mathieu Gerard Jacques Hubert, Dhananjay Joshi, Andrew Peter Kittleson, Katherine Weber Kroemer, Galan Gregory Moore, Rohit Rai, John Richard Ridge, John Robert Saltzer, JR., Charlene Marie Smith, Erika Lynn Stapleton, Matthew Daniel Trosa, Ljerka Ukrainczyk, Shelby Kerin Wilson, Bin Yang, Zheming Zheng
  • Publication number: 20210155524
    Abstract: Methods of forming a glass-ceramic article, the method are provided. Embodiments of the method may include initially nucleating a precursor glass composition at a first nucleation temperature and maintaining the first nucleation temperature for a pre-nucleating time period to produce a pre-nucleated crystallizable glass composition, wherein the pre-nucleated crystallizable glass composition comprises 5 wt % to 20 wt % crystalline phase ASTM C1365-18, forming the pre-nucleated crystallizable glass composition into an initial 3D shape; further nucleating the initial 3D shape for a nucleating time period to a second nucleation temperature to produce a nucleated crystallizable glass composition; and ceramming the nucleated crystallizable glass composition to a crystallization temperature and maintaining the ceramming temperature for a crystallization time period to produce the glass-ceramic article. The glass-ceramic article may have a final 3D shape is within 0.1 mm of the original design specifications.
    Type: Application
    Filed: November 23, 2020
    Publication date: May 27, 2021
    Inventors: Qiang Fu, Rohit Rai, John Richard Ridge, Ljerk Ukrainczyk
  • Patent number: 11014848
    Abstract: A glass ceramic article including a lithium disilicate crystalline phase, a petalite crystalline phased, and a residual glass phase. The glass ceramic article has a warp (?m)<(3.65×10?9/?m×diagonal2) where diagonal is a diagonal measurement of the glass ceramic article in ?m, a stress of less than 30 nm of retardation per mm of glass ceramic article thickness, a haze (%)<0.0994t +0.12 where t is the thickness of the glass ceramic article in mm, and an optical transmission (%)>0.91×10(2-0.03t) of electromagnetic radiation wavelengths from 450 nm to 800 nm, where t is the thickness of the glass ceramic article in mm.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: May 25, 2021
    Assignee: CORNING INCORPORATED
    Inventors: Carol Ann Click, James Howard Edmonston, Qiang Fu, Jill Marie Hall, Mathieu Gerard Jacques Hubert, Dhananjay Joshi, Andrew Peter Kittleson, Katherine Weber Kroemer, Galan Gregory Moore, Rohit Rai, John Richard Ridge, John Robert Saltzer, Jr., Charlene Marie Smith, Erika Lynn Stapleton, Matthew Daniel Trosa, Ljerka Ukrainczyk, Shelby Kerin Wilson, Bin Yang, Zheming Zheng
  • Publication number: 20200062631
    Abstract: A method includes contacting a glass sheet with a forming surface to form a shaped glass article. An effective viscosity of the glass sheet during the contacting step is less than a contact viscosity of the glass sheet in contact with the forming surface during the contacting step.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 27, 2020
    Inventors: Thierry Luc Alain Dannoux, Vladislav Yuryevich Golyatin, John Richard Ridge, Ljerka Ukrainczyk, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20200016869
    Abstract: A method of forming a 3D glass article from a glass sheet includes locating the glass sheet on a mold assembly including a mold surface with a 3D surface profile corresponding to that of the 3D glass article. The glass sheet is heated to a forming temperature. The forming temperature is greater than a temperature of the mold surface. The heated glass sheet is forced onto the mold surface by applying a pressurized gas to a first surface of the glass sheet opposite the mold surface to conform the glass sheet to the mold surface with the glass sheet at the forming temperature that is greater than the temperature of the mold surface.
    Type: Application
    Filed: September 24, 2019
    Publication date: January 16, 2020
    Inventors: Marianne Griesback Park, John Richard Ridge, Ljerka Ukrainczyk
  • Publication number: 20200017398
    Abstract: A glass ceramic article including a lithium disilicate crystalline phase, a petalite crystalline phased, and a residual glass phase. The glass ceramic article has a warp (?m)<(3.65×10?6/?m×diagonal2) where diagonal is a diagonal measurement of the glass ceramic article in ?m, a stress of less than 30 nm of retardation per mm of glass ceramic article thickness, a haze (%)<0.0994t+0.12 where t is the thickness of the glass ceramic article in mm, and an optical transmission (%)>0.91×10(2-0.03t) of electromagnetic radiation wavelengths from 450 nm to 800 nm, where t is the thickness of the glass ceramic article in mm.
    Type: Application
    Filed: July 12, 2019
    Publication date: January 16, 2020
    Applicant: CORNING INCORPORATED
    Inventors: Carol Ann Click, James Howard Edmonston, Qiang Fu, Jill Marie Hall, Mathieu Gerard Jacques Hubert, Dhananjay Joshi, Andrew Peter Kittleson, Katherine Weber Kroemer, Galan Gregory Moore, Rohit Rai, John Richard Ridge, John Robert Saltzer, JR., Charlene Marie Smith, Erika Lynn Stapleton, Matthew Daniel Trosa, Ljerka Ukrainczyk, Shelby Kerin Wilson, Bin Yang, Zheming Zheng
  • Publication number: 20190367402
    Abstract: A method for compensating for warp in a glass article including placing the glass article on a fixture, heating the glass article to a first temperature in a viscoelastic range, cooling the glass article on the fixture to a second temperature, and then removing the glass article from the fixture and cooling the glass article to room temperature. The fixture may include a recess such that when the glass article is heated to the first temperature, the glass article sags into the recess. The fixture may be a flat plate when the glass article is heated to the first temperature, a temperature gradient is formed within the glass article. A method for compensating for warp includes physically removing portions of the glass article that are determined to warp when chemically strengthened.
    Type: Application
    Filed: May 29, 2019
    Publication date: December 5, 2019
    Inventors: Rohit Rai, John Richard Ridge
  • Patent number: 10479052
    Abstract: A method of forming a 3D glass article from a glass sheet includes locating the glass sheet on a mold assembly including a mold surface with a 3D surface profile corresponding to that of the 3D glass article. The glass sheet is heated to a forming temperature. The forming temperature is greater than a temperature of the mold surface. The heated glass sheet is forced onto the mold surface by applying a pressurized gas to a first surface of the glass sheet opposite the mold surface to conform the glass sheet to the mold surface with the glass sheet at the forming temperature that is greater than the temperature of the mold surface.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: November 19, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Ljerka Ukrainczyk, John Richard Ridge, Marianne Griesbach Park
  • Patent number: 10442160
    Abstract: A method of forming a 3D glass article from a glass sheet includes locating the glass sheet on a mold assembly including a mold surface with a 3D surface profile corresponding to that of the 3D glass article. The glass sheet is heated to a forming temperature. The forming temperature is greater than a temperature of the mold surface. The heated glass sheet is forced onto the mold surface by applying a pressurized gas to a first surface of the glass sheet opposite the mold surface to conform the glass sheet to the mold surface with the glass sheet at the forming temperature that is greater than the temperature of the mold surface.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: October 15, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Ljerka Ukrainczyk, John Richard Ridge, Marianne Griesbach Park
  • Patent number: 10377656
    Abstract: A method includes contacting a second layer of a glass sheet with a forming surface to form a shaped glass article. The glass sheet includes a first layer adjacent to the second layer. The first layer includes a first glass composition. The second layer includes a second glass composition. An effective viscosity of the glass sheet during the contacting step is less than a viscosity of the second layer of the glass sheet during the contacting step. A shaped glass article includes a first layer including a first glass composition and a second layer including a second glass composition. A softening point of the first glass composition is less than a softening point of the second glass composition. An effective 108.2 P temperature of the glass article is at most about 900° C.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: August 13, 2019
    Assignee: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Vladislav Yuryevich Golyatin, John Richard Ridge, Ljerka Ukrainczyk, Butchi Reddy Vaddi, Natesan Venkataraman
  • Patent number: 9975800
    Abstract: A glass sheet is formed on a mold into a glass article having a three-dimensional shape. The mold, with the glass article thereon, is arranged within an interior space of a radiation shield such that the mold is between a leading end barrier and a trailing end barrier of the radiation shield. The mold, glass article, and radiation shield are translated through a sequence of cooling stations while maintaining the mold between the leading and trailing end barriers, wherein the leading and trailing end barriers inhibit radiation heat transfer at leading and trailing ends of the mold.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: May 22, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Thierry Luc Alain Dannoux, Raymond Chih Chung Hsiao, Nikolaos Pantelis Kladias, Rohit Rai, John Richard Ridge, John Robert Saltzer, Jr., Ljerka Ukrainczyk